A New Approach to Measure Spacecraft Moments of Inertia Based on the Analysis of a Self-Oscillating System
Authors: Reznik S.V., Videnkin N.A. | Published: 07.09.2016 |
Published in issue: #9(678)/2016 | |
Category: Aviation, Rocket and Technology | |
Keywords: moment of inertia, spacecraft, self-oscillations |
The conventional method for determining moments of inertia is based on the evaluation of the period of free oscillations of a torsion pendulum with one degree of freedom. The complexity of the method lies in the necessity to maintain the high quality factor of the oscillation process by decreasing the influence of dissipative forces that can lead to significant errors in measurements. The authors of this article propose a new approach to improve the conventional pendulum method by developing the self-oscillation process to eliminate damping. The article describes complex research of the proposed method for measuring the moment of inertia based on the self-oscillating system. MatLab software was used for the synthesis of a mathematical model of the test stand with the choice of optimal oscillation modes. The article presents the experimental results of testing the method using AMIK, an automated stand for controlling the coordinates of the center of mass and moments of inertia. The experimental results have verified the mathematical modeling results.
References
[1] Gernet M.M., Ratobyl’skii V.F. Opredelenie momentov inertsii [Defining moments of inertia]. Moscow, Mashinostroenie publ., 1969. 247 p.
[2] Combined center of gravity and moment of inertia measurement — Space Electronics. Available at: http://www.space-electronics.com/Products/KSR (accessed 29 April 2016).
[3] Medar’ A.V., Kotov A.N., Kochkin E.V. Opredelenie massoinertsionnykh kharakteristik konstruktsii kosmicheskikh letatel’nykh apparatov [Determination of space craft mass-inertial behaviour]. Tekhnologiia mashinostroeniia [Tekhnologiya Mashinostroeniya]. 2011, no. 3, pp. 45–47.
[4] Kutsenko B.N., Seliakov A.V., Starkova L.E. Sposob snizheniia momenta soprotivleniia elektrodvigatelia pri puske v usloviiakh nizkikh temperature [A method of reducing resistance of the motor at start-up at low temperatures]. Patent RF no. 2327277, 2008. 5 p.
[5] Brovkov I.E. Ustroistvo dlia staticheskoi balansirovki [Device for static balancing]. Avtorskoe svidetel’stvo no. 1497478 SSSR, 1989. 2 p.
[6] Bukhanchenko S.E., Larionov S.A., Pushkarenko A.B. Avtomatizirovannyi kompleks dlia ispytanii tribosopriazhenii na trenie i iznos v staticheskom i dinamicheskom rezhimakh [Automated complex for tribosoprjazhenij tests on friction and wear in static and dynamic modes]. Patent RF no. 2165077, 2001. 3 p.
[7] Harris T.A., Kotzalas M.N. Advanced Concepts of Bearing Technology, Rolling Bearing Analysis. CRC Press, 2007. 366 p.
[8] Stachowiak W.G. Engineering Tribology. Buttenworth-Heinemann, 2005. 766 p.
[9] Andronov A.A., Vitt A.A, Khaikin S.E. Teoriia kolebanii [Theory of oscillations]. Moscow, Nauka publ., 1981. 560 p.
[10] GOST R 8.736–2011. Izmereniia priamye mnogokratnye. Metody obrabotki rezul’tatov izmerenii. Osnovnye polozheniia [State system for ensuring the uniformity of measurements. Multiple direct measurements. Methods of measurement results processing. Main principles]. Moscow, Standartinform publ., 2013. 40 p.
[11] Matveev E.V., Videnkin N.A., Kochkin E.V. Novye avtomatizirovannye stendy dlia kontrolia inertsionnykh kharakteristik kosmicheskikh apparatov [New automated stands for control inertial characteristics of the spacecraft. Science and technology]. Nauka i tekhnologii. Materialy 32 Vserossiiskoi konferentsii po problemam nauki i tekhnologii [Materials 32 Russian National Conference on Science and Technology]. Miass, MSNT publ., 2012. 205 p.