Key Properties of Information Stability of an Automated Flight Control System for Spacecraft
Authors: Andreev А.G., Kazakov G.V., Koryanov V.V. | Published: 24.11.2016 |
Published in issue: #11(680)/2016 | |
Category: Aviation, Rocket and Technology | |
Keywords: database, information security, information stability, restorability, operating-technical level, data preparation |
The level of detail in the characteristics of an automated flight control system for spacecraft, which constitute the integrated property of information stability and therefore determine the system quality, has to be limited to the main properties. This is due to the fact that if the system is specified in great detail, the number of properties will run into hundreds. It will make the task of assessing the information stability indicator difficult to achieve, and important practical results will not be obtained. The main properties of the information stability of an automated control system are defined in the process of hierarchical decomposition of the integrated property. The first level includes three key properties of the automated flight control system for spacecraft: operating-technical level, restorability of the output data preparation process, and information security. The decomposition of the key properties of information stability is performed. The authors present the indicators that allow quantitative estimation of the degree to which the required indicators of the above-mentioned characteristics and the integrated property of information stability of the automated flight control system are achieved.
References
[1] Caati T.L. Priniatie reshenii. Metod analiza ierarkhii [Making decisions. The method of analysis of hierarchies]. Moscow, Radio i sviaz’ publ., 1993. 278 p.
[2] Omel’chenko I.N., Piliugina A.V., Ivanov A.G. Priniatie reshenii o vybore ratsional’noi struktury kapitala predpriiatiia na osnove metoda analiza ierarkhii [Making decisions about the choice of rational structure of the company’s capital on the basis of the analytic hierarchy process]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2011, no. 9. Available at: http://technomag.bmstu.ru/doc/223554.html (accessed 15 Mach 2016).
[3] Kliucharev P.G. Ob ustoichivosti obobshchennykh kletochnykh avtomatov k nekotorym tipam kollizii [On Collision Resistance of Generalized Cellular Automata]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 9, pp. 194–202. Available at: http://technomag.bmstu.ru/doc/727086.html (accessed 1 April 2016).
[4] Klimov S.M., Kotiashev N.N. Metod regulirovaniia riskov kompleksov sredstv avtomatizatsii v usloviiakh komp’iuternykh atak [Method of risk management for automated systems under conditions of cyber-attacks]. Nadezhnost’ [Dependability]. 2013, no. 2, pp. 93–100.
[5] Vasilenko V.V., Kazakov G.V., Kotiashev N.N. Otsenka funktsional’noi ustoichivosti gruppirovki mezhkontinental’nykh ballisticheskikh raket i obespechenie vypolneniia postavlennykh pered nei zadach [Assessment of functional stability group of intercontinental ballistic missiles and the enforcement of its tasks]. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering]. 2011, no. 1, pp. 139–147.
[6] Stepanov A.V. Razvitie priamogo metoda Liapunova dlia analiza dinamicheskoi ustoichivosti sistemy sinkhronnykh generatorov na osnove opredeleniia neustoichivykh polozhenii ravnovesiia na mnogomernoi sfere [A Development of the Direct Lyapunov Method for the Analysis of Transient Stability of a System of Synchronous Generators Based on the Determination of Non- Stable Equilibria on a Multidimensional Sphere]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 5. Available at: http://technomag.bmstu.ru/doc/712062.html (accessed 2 April 2016).
[7] Belyi A.F., Klimov S.M., Kotiashev N.N. Model’ formirovaniia igrovoi obstanovki dlia otsenki funktsional’noi ustoichivosti sredstv avtomatizatsii [The model of formation of a gaming environment for the evaluation of the functional stability of the automation equipment]. Informatsionnoe protivodeistvie ugrozam terrorizma [Information counter the threats of terrorism]. 2011, no. 16, pp. 105–108.
[8] Vasilenko V.V., Glukhov A.P., Kotiashev N.N. Upravlenie riskami primeneniia proektiruemykh sistem v usloviiakh vozdeistvii [Risk Management application designed systems under influences]. Strategicheskaia stabil’nost’ [Strategic stability]. 2008, no. 1, pp. 39–45.
[9] GOST R ISO/MEK 15408-3–2013. Informatsionnaia tekhnologiia. Metody i sredstva obespecheniia bezopasnosti. Kriterii otsenki bezopasnosti informatsionnykh tekhnologii. Chast’ 3. Komponenty doveriia k bezopasnosti [State Standard R ISO/IEC 15408-3-2013. Information technology. Security techniques. Evaluation criteria for IT security. Part 3. Security assurance requirements]. Moscow, Standartinform publ., 2014. 267 p.
[10] Rukovodiashchii dokument FSTEK. Avtomatizirovannye sistemy. Zashchita ot nesanktsionirovannogo dostupa k informatsii. Klassifikatsiia avtomatizirovannykh sistem i trebovaniia po zashchite informatsii [Guidance document FSTEC. Automated systems. Protection against unauthorized access to information. Classification of automated systems and the requirements for data protection]. Available at: http://fstec.ru/normotvorcheskaya/poisk-po-dokumentam/114-tekhnicheskaya-zashchita-informatsii/dokumenty/spetsialnye-normativnye-dokumenty/384-rukovodyashchij-dokument-reshenie-predsedatelya-gostekhkomissii-rossii-ot-30-marta-1992-g (accessed 10 May 2016).