Methodical Aspects of Standardization of All-Metal High-Pressure Spherical Tanks for Compressed and Liquefied Gases
Authors: Tarasov V.A., Baraev A.V., Boyarskaya R.V. | Published: 24.11.2016 |
Published in issue: #11(680)/2016 | |
Category: Aviation, Rocket and Technology | |
Keywords: compressed and liquefied gases, unification of a high-pressure spherical tanks, optimization criterion for parametric series values, reduction of the spherical tank nomenclature |
The standardization of high-pressure spherical tanks for compressed and liquefied gases is a promising cost reduction solution in the rocket and space industry. This article proposes a methodical basis to the search for the rational values of the parametric series of the standardized spherical tanks. The optimization criterion for the parametric series values is scientifically substantiated, and the efficiency of the proposed criterion is shown. The authors determine the interrelation of the grouping points of the energy values for mass-produced spherical tanks and energy intervals for the application of the standardized products. It is shown that using the proposed approach, it is possible to reduce the nomenclature of the spherical tanks by half. The area of energy of the compressed gases of 60–100 MJ is identified where the standardization allows increasing product manufacturing fourfold. All this increases the production performance indicators and stimulates work to improve manufacturing technology for spherical tanks.
References
[1] Tarasov V.A., Baraev A.V., Filimonov A.S., Boiarskaia R.V. Konstruktorsko-tekhnologicheskie osnovy unifikatsii parametrov tsel’nometallicheskikh ballonov vysokogo davleniia v raketno-kosmicheskom mashinostroenii [Design-Engineering Principles of Standardization of Characteristics of Solid-Metal High-Pressure Tanks in Rocket and Space Machine Building]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2014, no. 5(98), pp. 70–84.
[2] Bulanov I.M., Smyslov V.I., Komkov M.A., Kuznetsov V.M. Sosudy davleniia iz kompozitsionnykh materialov v konstruktsiiakh LA [Pressure vessels made of composite materials in aircraft structure]. Moscow, TsNII informatsii publ., 1985. 308 p.
[3] Benedic F., Leard J.-P., Lefloch C. Helium High Pressure Tanks at EADS Space Transportation New Technology with Thermoplastic Liner, 2005. Available at: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA445482 (accessed 01 May 2016).
[4] Ryan Gehm. Scorpius Space Launch propels all-composite tanks forward. SAE International, 2008. Available at: http://articles.sae.org/2866/ (accessed 01 May 2016).
[5] Monaghan M. NASA picks Boeing for composite cryogenic propellant tank tests. SAE International, 2011. Available at: http://articles.sae.org/10275/ (accessed 01 May 2016).
[6] Tarasov V.A., Kashuba L.A. Teoreticheskie osnovy tekhnologii raketostroeniia [Theoretical foundations of rocket technology]. Moscow, Bauman Press, 2006. 351 p.
[7] Medvedev A.A. Unifikatsiia, kak sredstvo obespecheniia nizkoi udel’noi stoimosti i povysheniia nadezhnosti vyvedeniia poleznoi nagruzki raketami-nositeliami [Unification, as a means of ensuring a low unit cost and improve the reliability of removing the payload launch vehicles]. V kn. Aktual’nye problemy rossiiskoi kosmonavtiki: Trudy 33 Akademicheskikh chtenii po kosmonavtike. [In the book Actual problems of Russian Astronautics: Proceedings of the 33 Academic readings on cosmonautics]. Moscow, Komissiia RAN po razrabotke nauchnogo naslediia pionerov osvoeniia kosmicheskogo prostranstva publ., 2009, pp. 252–253.
[8] GOST 23945.0–80. Unifikatsiia izdelii. Osnovnye polozheniia [State Standard 23945.0–80. Unifying products. Fundamentals]. Moscow, Standartinform publ., 1991. 8 p.
[9] R 50.1.028–2001. Rekomendatsii po standartizatsii. Informatsionnye tekhnologii podderzhki zhiznennogo tsikla produktsii. Metodologiia funktsional’nogo modelirovaniia [P 50.1.028–2001. Recommendations for standardization. Information technology support for the product lifecycle. Methodology for functional simulation]. Moscow, Standartinform publ., 2001. 78 p.
[10] Petrov A.V. Modelirovanie organizatsionno-tekhnologicheskoi sredy sozdaniia raketno-kosmicheskoi tekhniki [Modeling organizational and technological environment of rocket and space technology]. Moscow, Mashinostroenie publ., 1999. 318 p.
[11] Tikhomirov V.A. Osnovy proektirovaniia samoletostroitel’nykh zavodov i tsekhov [Fundamentals of aircraft manufacturing plants and workshops]. Moscow, Mashinostroenie publ., 1975. 472 p.