The Methods of Designing a Polymer Composite Wing Using Parametrical Modeling. Part II. Design of the Load Bearing Structure
Authors: Mikhailovskiy K.V., Baranovski S.V. | Published: 16.12.2016 |
Published in issue: #12(681)/2016 | |
Category: Aviation, Rocket and Technology | |
Keywords: passenger jet, wing, polymer composite materials, structural arrangement, stringer, rib, longeron |
Design of a polymer composite wing is a complex research and engineering challenge when designing an airliner. It requires considerable time and financial expenditure. Therefore, availability of universal methods that can reduce the duration and increase the informational content of the design stages, can considerably accelerate the design process. In this work, the second part of the results of modeling using the proposed methods is presented. It contains the justification of the structural arrangement on the basis of parametrical calculations of 90 geometrical models of a wing made of polymer composite materials, with the choice of a form and materials of the load bearing element of the panel. Rational geometrical parameters of the arrangement of the load bearing elements of the structure are determined, including the step and the direction for installation of ribs, stringers, longerons that provide the largest strength safety margin. The form and the material of a stringer are justified on the basis of the performed calculations.
References
[1] Mikhailovskii K.V., Baranovski S.V. Metodika proektirovaniia geometricheskogo oblika kryla iz polimernykh kompozitsionnykh materialov [Methods of designing the geometric shape of the wing of polymer composite materials]. Mekhanika i matematicheskoe modelirovanie v tekhnike. Sb. tez. dokl. Vseros. nauch.-tekhn. konf. [Mechanics and mathematical modeling in engineering. A collection of abstracts of all-Russian scientific-technical conference]. Moscow, Bauman Press, 2016, pp. 319–322.
[2] Schuhmacher G., Daoud F., Petersson Ö., Wagner M. Multidisciplinary airframe design optimization. 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, 2012, Paper ICAS 2012-0.4, рр. 1–13.
[3] Kruse M., Wunderlich T., Heinrich L. A Conceptual Study of a Transonic NLF Transport Aircraft with Forward Swept Wings. 30th AIAA Applied Aerodynamics Conference, New Orleans, 2012, AIAA Paper no. 2012–3208, pp. 1–27.
[4] Dillinger K.S., Abdalla M.M., Klimmek T., Gurdal Z. Static Aeroelastic Stiffness Optimization and Investigation of Forward Swept Composite Wings. 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, 2013, pp. 19–24.
[5] Stanford B., Dunning P. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads. Journal of Aircraft, 2015, vol. 52, pp. 1298–1311.
[6] Wang Y., Ouyang X., Yin H., Yu X. Structural-Optimization Strategy for Composite Wing Based on Equivalent Finite Element Model. Journal of Aircraft, 2016, vol. 53, no. 2, pp. 351–359.
[7] Khong F.N., Biriuk V.I. Issledovaniia po optimizatsii konstruktivno-silovoi skhemy samoleta s priamym krylom iz kompozitsionnykh materialov [Research on optimization of structural and power circuits of the aircraft with straight wings made of composite materials]. Trudy MFTI [Proceedings of MIPT]. 2014, vol. 6, no. 2, pp. 133–141.
[8] Bai C., Mingqiang L., Zhong S., Zhe W., Yiming M., Lei F. Wing weight estimation considering constraints of structural strength and stiffness in aircraft conceptual design. International Journal of Aeronautical and Space Sciences, 2014, vol. 15, no. 4, pp. 383–395.
[9] Locatelli D., Mulani S., Kapania R. Wing-box weight optimization using curvilinear spars and ribs (SpaRibs). Journal of Aircraft, 2011, vol. 48, no. 5, pp. 1671–1684.
[10] Khani A., Ijsselmuiden S., Abdalla M., G?rdal Z. Design of variable stiffness panels for maximum strength using lamination parameters. Composites Part B: Engineering, 2011, vol. 42, no. 3, pp. 546–552.
[11] Stanford B., Beran P., Bhatia M. Aeroelastic Topology Optimization of Blade-Stiffened Panels. Journal of Aircraft, 2014, vol. 51, no. 3, pp. 938–944.
[12] Mitrofanov O.V., Ognianova T.S. Proektirovanie nesushchikh panelei kryla iz kompozitnykh materialov samoleta srednei gruzopod"emnosti pri ogranicheniiakh po ostatochnoi prochnosti pri szhatii i sdvige [Medium weight-lift aircraft composite wing load-bearing panels design with compression and shear residual strength boundary conditions]. Estestvennye i tekhnicheskie nauki [Natural and technical sciences]. 2013, vol. 6, no. 68, pp. 261–265.
[13] Sandeep D., Nageswara Rao A. Optimized design and analysis for the development of aircraft droop nose ribs. International Journal of Modern Research & Development, 2014, vol. 1, no. 7, pp. 34–41.
[14] Sysoeva V.V., Chedrik V.V. Algoritmy optimizatsii topologii silovykh konstruktsii [Algorithms for optimization of power topology designs]. Uchenye zapiski TsAGI [TsAGI Scientists notes]. 2011, vol. 42, no. 2, pp. 91–102.
[15] Morgulets S.V., Chernetsov A.A., Afanas’ev A.V., Kosarev V.A. Kompleksnaia metodika raschetnogo proektirovaniia tonkostennykh konstruktsii iz PKM na primere kessona kryla samoleta [A complex method for design engineering of the PCM thin-walled structures ? case study of an aircraft wing torsion box]. Aviatsionnaia promyshlennost’ [Aircraft Industry]. 2012, no. 1, pp. 37–41.
[16] Chedrik V.V. Reshenie zadachi mnogodistsiplinarnoi optimizatsii silovykh konstruktsii na osnove mnogourovnevogo podkhoda [Solving the multidisciplinary structural optimization problem based on multilevel approach]. Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky University of Nizhni Novgorod]. 2011, vol. 4, no. 42, pp. 1847–1849.