Launch Vehicle Rendezvous with Cataloged Space Objects During Insertion into Orbits with Low Inclination
Authors: Golubek A.V. | Published: 21.02.2018 |
Published in issue: #2(695)/2018 | |
Category: Aviation, Rocket and Technology | |
Keywords: launch vehicle, cataloged space objects, mutual motion, dangerous rendezvous |
A simulation modeling of mutual motion of a launch vehicle inserting a satellite into near-circular orbits of heights up to 2100 km and inclinations up to 45 degrees, and a group of catalogued space objects in a deterministic formulation was carried out. Distributions of relative distance, relative velocity, incidence angles and moments of time of approach by the distance of less than 5 km were obtained. The dependence of the average density of approaches on the distribution of space objects by the average height and inclination of the target orbit of the launch vehicle was determined. The average probability of rendezvous of the launch vehicle with catalogued space objects when launching at a distance of less than 100 m was evaluated.
References
[1] GOST R 25645.167–2005. Kosmicheskaia sreda (estestvennaia i iskusstvennaia). Model’ prostranstvenno-vremennogo raspredeleniia plotnosti potokov tekhnogennogo veshchestva v kosmicheskom prostranstve[Space environm ent (natural and artificial). Model o t spatial and time distribution for space debris flux density in LEO]. Moscow, Standartinform publ., 2005. 41 p.
[2] Nazarenko A.I. Modelirovanie kosmicheskogo musora [Modeling of space debris]. Moscow, IKI RAN publ., 2013. 216 p.
[3] Klinkrad H. Space Debris: Models and Risk Analysis. Chichester, Springer-Verlag, 2006. 430 p.
[4] Kosmicheskii musor — ugroza chelovechestvu [Space debris is a threat to humanity]. Ed. Veniaminov S.S. Moscow, IKI RAN publ., 2013. 207 p.
[5] Donald J. Kessler, Phillip D. Anz-Meador Critical number of spacecraft in low Earth orbit: using satellite fragmentation data to evaluate the stability of the orbital debris environment. Proceedings of the Third European Conference on Space Debris, 19–21 March 2001, Darmstadt, Germany, Netherlands, ESA Publications Division, 2001, pp. 265–272.
[6] Anz-Meador P., Krisko P., Matney M. GEO Evolve 1.0: A Long-Term Debris Evolution Model for the Geosynchronous Belt. The Orbital Debris. Quarterly News, 2000, vol. 5, no. 4. Available at: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv5i4.pdf (accessed 15 November 2017).
[7] Patera R.P. Vehicular trajectory collision conflict prediction method. Patent USA no. 20040024527 A1, 2004. 14 p.
[8] Firooz A.A., Rongier I., Wilde P.D., Sgobba T. Safety Design for Space Operations. Oxford, Elsevier Ltd., 2013. 1081 r.
[9] Springer H.K., Miller W.O., Levatin J.L., Pertica A.J., Olivier S.S. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, Hawaii, 14–17 September 2010, p. E37.
[10] Steel D. Assessment of the Orbital Debris Collision Hazard for Low-Earth Orbit Satellites. Available at: http://www.duncansteel.com/archives/1425 (accessed 15 November 2017).
[11] Vittaldev V., Russell R.P. Collision Probability for Space Objects Using Gaussian Mixture Models. 23rd AAS/AIAA Space Flight Mechanics Meeting, Spaceflight Mechanics, 10–14 February 2013, Kauai, HI, United States, 2013, pp. 2339–2358.
[12] Hejduk M.D., Plakalovic D., Newman L.K., Ollivierre J.C., Hametz M.E., Beaver B.A., Thompson R.C. Recommended risk assessment techniques and thresholds for launch COLA operations. Available at: http://www.astrorum.us/ESW/Files/Recommended_Risk_Assessment_Techniques_and_Thresholds_for_Launch_COLA_Operations_2013.pdf (accessed 15 November 2017).
[13] Baranov A.A., Karatunov M.O. Metodika vyiavleniia i otsenki sblizhenii kosmicheskogo apparata s ob"ektami kosmicheskogo musora [Techniques of Identification and Evaluation of Spacecraft Approaches to Space Debris]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2016, no. 4. Available at: http://engjournal.ru/articles/1485/1485.pdf (accessed 15 November 2017).
[14] EGM2008 — WGS 84 Version. Available at: http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html (accessed 15 November 2017).
[15] Igdalov I.M., Kuchma L.D., Poliakov N.V., Sheptun Iu.D. Dinamicheskoe proektirovanie raket. Zadachi dinamiki raket i ikh kosmicheskikh stupenei [Dynamic design of missiles. The problems of the dynamics of rockets and their cosmic stages]. Dnepropetrovsk, Dnepropetrovskii natsional’nyi universitet publ., 2010. 264 p.
[16] Mashinostroenie. Entsiklopediia. T. 4-22: Raketno-kosmicheskaia tekhnika [Mechanical engineering. Encyclopedia. Vol. 4-22: Rocket and space technology]. B. 1. Ed. Frolov K.V. Moscow, Mashinostroenie publ., 2012. 925 p.
[17] Sikharulidze Iu.G. Ballistika i navedenie letatel’nykh apparatov [Ballistics and guidance of aircraft]. Moscow, Binom. Laboratoriia znanii publ., 2011. 407 p.
[18] Lysenko L.N. Navedenie i navigatsiia ballisticheskikh raket [Guidance and navigation of ballistic missiles]. Moscow, Bauman Press, 2007. 672 p.
[19] Proektirovanie sistem upravleniia ob"ektov raketno-kosmicheskoi tekhniki. T. 1: Proektirovanie sistem upravleniia raket-nositelei [Designing control systems for rocket and space equipment. Vol. 1: Design of control systems for launch vehicles]. Ed. Alekseev Iu.S., Zlatkin Iu.M., Krivtsov V.S., Kulik A.S., Chumachenko V.I. Khar’kov, Natsional’nyi aerokosmicheskii universitet im. N.E. Zhukovskogo «Khar’kovskii aviatsionnyi institut» publ., NPP «Khartron-Arkos» publ., 2012. 578 p.