Modeling Heat Strength Characteristics of Structural Elements of a Solid Propellant Rocket Engine Manufactured Using Prototyping
Authors: Ushakova E.S., Arefyev K.Yu., Polyanskiy A.R. | Published: 28.04.2018 |
Published in issue: #4(697)/2018 | |
Category: Aviation, Rocket and Technology | |
Keywords: powder prototyping technology, safety factor, temperature conditions of the structure, convective heat transfer, nozzle block |
Structural elements of a solid-propellant rocket engine (SRE) are characterized by technological complexity of manufacturing and assembling. One of the possible technologies that reduce the time and cost of manufacturing SRE components is the technology of laser sintering of powder metal-polymer compositions (powder 3D prototyping). Its distinctive feature is layer-by-layer creation of a component in the process of sintering. However, the introduction of the powder technology prototyping in the manufacture of vital parts presents a number of challenges, including some reduction in mechanical characteristics of the resulting material. The article presents a method of calculating heat-strength characteristics of structural elements of the SRE using algorithms of numerical modeling. The changes in the factor of safety of the component manufactured using the technology of powder prototyping are estimated depending on the working conditions of the SRE (pressure in the combustion chamber, temperature of the structure). As a result of the mathematical modeling of heat-strength characteristics of the load-bearing structure of the SRE nozzle, it is shown that the developed method can be used for selecting parameters of the SRE structural components.
References
[1] Elistratova A.A., Korshakevich I.S., Tikhonenko D.V. Tekhnologii 3D-pechati: preimushchestva i nedostatki [3D-printing technologies: advantages and disadvantages]. Reshetnevskie chteniia. Sbornik materialov XVIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Reshetnev readings. The collection of materials of XVIII International scientific and practical conference]. Krasnoyarsk, 11–14 November 2014, Sibirskii gosudarstvennyi aerokosmicheskii universitet im. akademika M.F. Reshetneva publ., 2014, pp. 557–559.
[2] Abdullin M.I., Basyrov A.A., Nikolaev A.V. Metallopolimernye kompozitsii dlia 3D pechati [Metal filled compositions for 3D printing]. Universum: khimiia i biologiia [Universum: chemistry and biology]. 2015, no. 11(18). Available at: http://7universum.com/ru/nature/archive/item/2701 (accessed 05 July 2017).
[3] Iagodnikov D.A., Ir’ianov N.Ia. Raketnye dvigatel’nye ustanovki [Rocket propulsion]. Moscow, Bauman Press, 2012. 84 p.
[4] Volkov V.T., Iagodnikov D.A. Issledovanie i stendovaia otrabotka raketnykh dvigatelei na tverdom toplive [Research and bench testing of rocket engines solid fuel]. Moscow, Bauman Press, 2007. 296 p.
[5] Fakhrutdinov I.Kh., Kotel’nikov A.V. Konstruktsiia i proektirovanie raketnykh dvigatelei tverdogo topliva [The construction and design of rocket engines solid fuel]. Moscow, Mashinostroenie publ., 1987. 328 p.
[6] Meiz Dzh. Teoriia i zadachi mekhaniki sploshnykh sred [Theory and problems of continuum mechanics]. Moscow, LKI publ., 2007. 320 p.
[7] GOST R 52857.1–2007. Sosudy i apparaty. Normy i metody rascheta na prochnost’. Obshchie trebovaniia [State Standard R 52857.1–2007. Vessels and apparatus. Norms and methods of strength calculation. General requirements]. Moscow, Standartinform publ., 2008. 28 p.
[8] Galimova L.A., Atroshchenko V.V., Smirnov V.V., Churakova A.A., Gunderov D.V., Zamanova G.I. Struktura i mekhanicheskie svoistva obraztsov iz nerzhaveiushchei stali, poluchennykh metodom selektivnogo spekaniia [Structure and properties of stainless steel specimens received by method of selective sintering]. Vestnik Bashkirskogo universiteta: matematika i mekhanika [Bulletin of Bashkir University]. 2016, no. 2, pp. 258–263.
[9] Hendrickson J.W. Use of Direct Metal Laser Sintering for Tooling in High Volume Production. USU Library, Logan, Utah, 2015. 35 p.
[10] Torrado A.R., Roberson D.A. Failure Analysis and Anisotropy Evaluation of 3D-Printed Tensile Test Specimens of Different Geometries and Print Raster Patterns. Journal of Failure Analysis and Prevention, 2016, no. 1, pp. 154–164.
[11] Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike [Fundamentals of heat transfer in aviation and rocket-space technology]. Ed. Avduevskii V.S., Koshkin V.K. Moscow, Mashinostroenie publ., 1992. 528 p.
[12] Zhurbenko P., Guznenkov V. Autodesk Inventor 2012. Trekhmernoe modelirovanie detalei i sozdanie chertezhei [Autodesk Inventor 2012. Three-dimensional modeling of parts and create drawings]. Moscow, DMK Press, 2017. 120 p.
[13] Marochnik stalei i splavov [Marochnik steels and alloys]. Ed. Dragunov Iu.G., Zubchenko A.S. Moscow, 2014. 1216 p.
[14] Engelson V., Bunus P., Popescu P., Fritzson P. Mechanical CAD with multibody dynamic analysis based on Modelica simulation. Proceedings of the 44th Scandinavian Conference on Simulation and Modeling, Västerås, Sweden, Modelica Association, 2003, pp. 18–19.
[15] Bykov L.V. Raschet techeniia i teploobmena v sverkhzvukovom sople [Simulation of gas flow and heat transfer in supersonic nozzle]. Trudy MAI [Proceedings of MAI]. 2011, no. 44, pp. 15–15. Available at: http://trudymai.ru/published.php?ID=24974 (accessed 15 August 2017).