Method of designing the composite load-bearing elements of the fuselage tail section
Authors: Tun Lin Htet, Prosuntsov P.V. | Published: 09.02.2023 |
Published in issue: #2(755)/2023 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: light aircraft, fuselage tail section, power structure, parametric optimization, topological optimization, polymer composite material |
The paper considers the method of designing the power set of the DA-62 aircraft tail section, which includes the stages of determining loads acting on the tail section, selecting position, shape and structure of the power elements, characteristics of the composite materials, from which they were made. The design process took into account simultaneous effect of aerodynamic and mass-inertial loads on the aircraft structure during various maneuvers. A feature of the method to determine geometric dimensions and shape of frames is introducing a combination of parametric and topological optimization techniques. To increase the structure weight efficiency, the problem of optimizing the scheme for laying the polymer composite material was solved. Physical and mechanical characteristics of the composite materials were determined by theoretical calculation using the multi-scale simulation principle.
References
[1] Kondrashov S.V., Shashkeev K.A., Petrova G.N. et al. Constructional polymer composites with functional properties. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2017, no. S, pp. 405–419, doi: https://doi.org/10.18577/2071-9140-2017-0-S-405-419 (in Russ.).
[2] Savin S.P. Application of modern polymeric composite materials in the design of MS-21 airplane family. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2012, no. 4–2, pp. 686–693. (In Russ.).
[3] Eger S.M., ed. Proektirovanie samoletov [Aircraft design]. Moscow, Mashinostroenie Publ., 1983. 616 p. (In Russ.).
[4] Pogosyan M.A., ed. Proektirovanie samoletov [Aircraft design]. Moscow, Innovatsionnoe mashinostroenie Publ., 2018. 864 p. (In Russ.).
[5] Vislov I.P. Proektirovanie legkikh i sverkhlegkikh letatelnykh apparatov [Design of light and ultralight aircraft]. Samara, SGAU Publ., 2005. 114 p. (In Russ.).
[6] Badyagin A.A., Mukhamedov F.A. Proektirovanie legkikh samoletov [Design of light aircraft]. Moscow, Mashinostroenie Publ., 1978. 208 p. (In Russ.).
[7] Drobyshevskiy V.G. Proektirovanie samoleta. Kursovoe i diplomnoe proektirovanie [Aircraft design. Term and diploma project]. Nizhniy Novgorod, NGTU Publ., 2013. 157 p. (In Russ.).
[8] Hasan Z., Atmeh G. Design and analysis of a smart composite wing. Proc. IMECE 11, 2011, pp. 213–222, doi: https://doi.org/10.1115/IMECE2011-64802
[9] Nguen Kh.F. Optimizatsiya konstruktivno-silovoy skhemy kryla bespilotnogo letatelnogo apparata iz kompozitsionnykh materialov s ogranicheniyami po aerodinamicheskoy forme. Avtoref. diss. … kand. tekh. nauk [Structural-power scheme optimization of an unmanned aerial vehicle wing made of composite materials with restrictions on the aerodynamic shape. Abs. kand. tech. sci. diss.]. Moscow, MFTI, Publ., 2015. 25 p. (In Russ.).
[10] Sinchai C. Composite wing structure of light amphibious airplane design, optimization, and experimental testing. Heliyon, 2021, vol. 7, no. 11, art. e08410, doi: https://doi.org/10.1016/j.heliyon.2021.e08410
[11] Mikhaylovskiy K.V., Baranovski S.V. The methods of designing a polymer composite wing using parametrical modeling. Part II. Design of the load bearing structure. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2016, no. 12, pp. 106–116, doi: https://doi.org/10.18698/0536-1044-2016-12-106-116 (In Russ.).
[12] Pechenyuk V.S., Popov Yu.I. Conceptual design of the wing or fuselage structure of a mainline aircraft made of metal-polymer composite materials. Vestnik PNIPU. Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering Bulletin], 2021, no. 64, pp. 74–82, doi: https://doi.org/10.15593/2224-9982/2021.64.08 (in Russ.).
[13] Airbus A350-900. aircraft.airbus.com: website. URL: https://aircraft.airbus.com/en/aircraft/a350/a350-900 (accessed: 19.05.2022).
[14] Cirrus SR-22. cirrusaircraft.com: website. URL: https://cirrusaircraft.com/aircraft/sr22/ (accessed: 19.05.2022).
[15] Tselnokompozitnyy samolet TVS-2DTS vypolnil pervyy polet [Full-composite TVS-2DTS aircraft has made its first flight]. aviation21.ru: website. URL: http://aviation21.ru/celnokompozitnyj-samolyot-tvs-2dts-vypolnil-pervyj-polyot/ (accessed: 13.07.2017).
[16] Zhitomirskiy G.I. Konstruktsiya samoletov [Aircraft construtions]. Moscow, Mashinostroenie Publ., 2005. 404 p. (In Russ.).
[17] Davis G.W., Sakata I.F. Design considerations for composite fuselage structure of commercial transport aircraft. NASA Contractor report 159296. NASA, 1981. 51 p.
[18] Tarasov Yu.L., Lavrov Yu.L. Raschet na prochnost elementov konstrukcii samoleta [Strength calculation of aircraft design elements]. Samara, SGAU Publ., 2000. 112 p. (In Russ.).
[19] Kanchaya Rokhas R.A. Raschet na prochnost i vybor ratsionalnykh proektnykh parametrov otsekov fyuzelyazha iz kompozitsionnykh materialov samoletov legkogo i srednego klassov. Avtoref. diss. kand. tekh. nauk [Strength calculation and selection of rational design parameters for fuselage compartments made of composite materials for light and medium class aircraft. Abs. kand. tech. sci. diss.]. Moscow, MAI Publ., 2011. 24 p. (In Russ.).
[20] Morishima R. Analysis of composite wing structures with a morphing leading edge. PhD thesis. Cranfield University, 2011. 260 p.
[21] Dubovikov E.A. Mnogourovnevyy algoritm otsenki perspektivnykh konstruktivno-silovykh skhem kompozitnykh aviakonstruktsiy. Avtoref. diss. kand. tekh. nauk [Multilevel algorithm for evaluating prospective structural-force diagrams of composite aircraft structures. Abs. kand. tech. sci. diss.]. Zhukovskiy, TsAGI Publ., 2017. 29 p. (In Russ.).
[22] Stolyarov D.V. Razrabotka metodiki vybora ratsionalnoy skhemy shpangoutov fyuzelyazha istrebitelya integralnoy komponovki. Avtoref. diss. kand. tekh. nauk [Development of a methodology for selecting a rational scheme of integral fighter fuselage bends. Abs. kand. tech. sci. diss.]. Moscow, MAI Publ., 2011. 24 p. (In Russ.).
[23] Zhu J.H., Zhang W.H., Xia L. Topology optimization in aircraft and aerospace structures design. Arch. Computat. Methods Eng., 2016, vol. 23, no. 4, pp. 595–622, doi: https://doi.org/10.1007/s11831-015-9151-2
[24] Eves J., Toropov V.V., Thompson H.M. et al. Topology optimization of aircraft with non-conventional configurations. 8th World congress on Structural and Multidisciplinary Optimization, 2009. URL: https://eprints.whiterose.ac.uk/10474/ (accessed: 15.02.2021).
[25] Gui X., Xiao M., Zhang Y. et al. Structural topology optimization based on parametric level set method under the environment of ANSYS secondary development. Adv. Comput. Sci. Res., 2017, vol. 74, pp. 841–850, doi: https://dx.doi.org/10.2991/iccia-17.2017.152
[26] DA 62. The ultimate flying machine. diamondaircraft.com: website. URL: https://www.diamondaircraft.com/en/private-pilots/aircraft/da62/overview/ (accessed: 15.02.2021).
[27] Aviatsionnye pravila. Chast 23. Normy letnoy godnosti grazhdanskikh legkikh samoletov [Aviation regulations. Part 23. Standards of airworthiness of civil light aircraft]. Moscow, Aviaizdat Publ., 2014. 195 p. (In Russ.).
[28] ANSYS Fluent. ansys.com: website. URL: https://www.ansys.com/products/fluids/ansys-fluent (accessed: 15.02.2021).
[29] Ashikhmina E.R., Prosuntsov P.V. Coupled CFD-based shape optimization of wing of reusable space vehicle of tourist class. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 709, no. 2, art. 022108, doi: https://doi.org/10.1088/1757-899X/709/2/022108
[30] Tun Lin Htet, Prosuntsov P.V. Parametric and topology optimization of polymer composite load bearing elements of rear part of aircraft fuselage structure. AIP Conf. Proc., 2021, vol. 2318, no. 1, art. 020008, doi: https://doi.org/10.1063/5.0035742
[31] Tun Lin Htet, Prosuntsov P.V. Comparative analysis of the selection of lay-up stacking of polymer composite load-bearing elements for the tail section of fuselage structure of the light aircraft. MATEC Web Conf., 2021, vol. 346, art. 03111, doi: https://doi.org/10.1051/matecconf/202134603111
[32] Ansys Topology Optimization. www.ansys.com: website. URL: www.ansys.com/applicatoins/topology-optimization (accessed: 15.02.2021).