Cooling capacity parametric identification of the two-stage cryostat nitrogen and helium stages
Authors: Borschev N.O. | Published: 22.04.2024 |
Published in issue: #5(770)/2024 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: heat transfer problem, iterative regularization method, stage cooling capacity, two-stage cryostat, conjugate directions method |
The paper proposes a method to assess cooling capacity of the closed-type nitrogen-helium cryostat. The method is based on searching for extremum of the calculated values of the each stage cooling capacity in each time block while minimizing the root-mean-square functional of the discrepancy between the expected and calculated dynamics in cooling the stages. First, direct problem of the structure heat transfer is solved, and then the minimum root-mean-square error is found based on the selected regularization method with iterative refinement of the parameters under study. The conjugate directions method is chosen for optimization, as it is the most accurate method of the first order of convergence. The iterative regularization method is selected to overcome incorrectness in the initial data, as iteration number is the regularizing parameter.
EDN: XTPCXK, https://elibrary/xtpcxk
References
[1] Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata [Spacecraft heat transfer calculation]. Moscow, Mashinostroenie Publ., 1979. 208 p. (In Russ.).
[2] Kreyn S.G., Prozorovskaya O.I. Analytic semigroups and incorrect problems for evolutionary equations. Doklady Akademii nauk SSSR, 1960 vol. 133, no. 2, pp. 277–280. (In Russ.).
[3] Basistov Yu.A., Yanovskiy Yu.G. Ill-posed problems of mechanics (rheology) of viscoelastic media and theirs regularization. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of Composite Materials and Structures], 2010 vol. 16, no. 1, pp. 117–143. (In Russ.).
[4] Bakushinskiy A.B., Kokurin M.Yu., Kokurin M.M. Direct and converse theorems for iterative methods of solving irregular operator equations and finite difference methods for solving ill-posed cauchy problems. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 2020 vol. 60, no. 6, pp. 939–962, doi: https://doi.org/10.31857/S0044466920060022 (in Russ.). (Eng. version: Comput. Math. and Math. Phys., 2020, vol. 60, no. 6, pp. 915–937, doi: https://doi.org/10.1134/S0965542520060020)
[5] Fanov V.V., Martynov M.B., Karchaev Kh.Zh. Flightborne vehicles by Lavochkin association (to the eightieth anniversary of Lavochkin association). Vestnik NPO im. S.A. Lavochkina, 2017, no. 2, pp. 5–16. (In Russ.).
[6] Blokh A.G., Zhuravlev Yu.A., Ryzhkov L.N. Teploobmen izlucheniem [Heat exchange by radiation]. Moscow, Energoatomizdat Publ., 1991. 432 p. (In Russ.).
[7] Tulin D.V., Finchenko V.S. Teoretiko-eksperimentalnye metody proektirovaniya sistem obespecheniya teplovogo rezhima kosmicheskikh apparatov [Theoretical and experimental methods of design of systems for providing thermal mode of spacecrafts]. V: Proektirovanie avtomaticheskikh kosmicheskikh apparatov dlya fundamentalnykh nauchnykh issledovaniy. T. 3 [In: Designing of automatic spacecraft for fundamental scientific research. Vol. 3]. Moscow, MAI-Print, 2014, pp. 1320–1437. (In Russ.).
[8] Tsaplin S.V., Bolychev S.A., Romanov A.E. Teploobmen v kosmose [Heat transfer in space]. Samara, Samarskiy universitet Publ., 2013. 90 p. (In Russ.).
[9] Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. Ekstremalnye metody resheniya nekorrektnykh zadach [Extreme methods for solving incorrect problems]. Moscow, Nauka Publ., 1988. 285 p. (In Russ.).
[10] Alifanov O.M. Obratnye zadachi teploobmena [Inverse problems of heat transfer]. Moscow, Mashinostroenie Publ., 1988. 280 p. (In Russ.).
[11] Formalev V.F. Teploperenos v anizotropnykh tverdykh telakh [Heat transfer in anisotropic solids]. Moscow, Fizmatlit Publ., 2015. 274 p. (In Russ.).
[12] Vasin V.V. Modified steepest descent method for nonlinear irregular operator equations. Doklady Akademii nauk, 2015 vol. 462, no. 3, pp. 264–267, doi: https://doi.org/10.7868/S0869565215150086 (in Russ.). (Eng. version: Dokl. Math., 2015, vol. 91, no. 3, pp. 300–303, doi: https://doi.org/10.1134/S1064562415030187)
[13] Golichev I.I. Modified gradient fastest descent method forsolving linearized non-stationary Navier-Stokes equations. Ufimskiy matematicheskiy zhurnal [Ufa Mathematical Journal], 2013 vol. 5, no. 4, pp. 60–76, doi: http://dx.doi.org/10.13108/2013-5-4-58 (in Russ.).
[14] Formalev V.F., Reviznikov D.L. Chislennye metody [Numerical methids]. Moscow, Fizmatlit Publ., 2004. 400 p. (In Russ.).
[15] Formalev V.F. Analysis of two-dimensional temperature fields in anisotropic bodies with allowance for moving boundaries and a high degree of anisotropy. Teplofizika vysokikh temperatur, 1990 vol. 28, no. 4, pp. 715–721. (In Russ.). (Eng. version: High Temp., 1990, vol. 28, no. 4, pp. 535–541.)
[16] Formalev V.F. Indentification of two-dimensional heat fluxes in anisotropic complex shape bodies. Inzhenerno-fizicheskiy zhurnal, 1989 vol. 56, no. 3, pp. 382–386. (In Russ.).
[17] Formalev V.F., Kolesnik S.A. Analiticheskoe reshenie vtoroy nachalno-kraevoy zadachi anizotropnoy teploprovodnosti. Matematicheskoe modelirovanie, 2001 vol. 13, no. 7, pp. 21–25. (In Russ.).