Overview: computational and experimental research in studying acoustics and acoustic strength of the flying vehicles
Authors: Khodina A.S. | Published: 18.11.2024 |
Published in issue: #11(776)/2024 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: acoustic strength, vibroacoustic loads, sound insulation, full-scale testing, mathematical simulation |
The need to improve aviation technology poses complex problems for the engineers. Mathematical simulation is becoming increasingly important in solving them as it expands possibilities in designing a flying vehicle. Noise is negatively effecting human health; therefore, one of the promising areas in modernizing the aviation structures is associated with reducing its level in the flying vehicle cabin. In addition to the fact that noise causes discomfort and has a detrimental effect on the body, acoustic loads could contribute to the fatigue cracks formation in the airframe structure, which is unacceptable. The paper describes main approaches to studying acoustics and acoustic strength both experimentally and using the mathematical simulation. It provides an overview of methods to reduce noise in a cabin. Promising research areas are identified. Literature analysis demonstrates the relevance of using numerical calculation in the design and development of the computation and experimental methods making it possible to reduce the number of full-scale testing.
EDN: GOXWDA, https://elibrary/goxwda
References
[1] Castelo Branco N.A.A., Alves-Pereira M. Vibroacoustic disease — current concept. Proc. 11th Int. Congress on Sound and Vibration. Sankt-Petersburg, 2004, pp. 1775–1782.
[2] Golubev A.Yu. Experimental estimate of wave spectra of wall pressure fluctuations of the turbulent boundary layer in the subconvective region. Akusticheskiy zhurnal, 2012, vol. 58, no. 4, pp. 434–442. (In Russ.). (Eng. version: Acoust. Phys., 2012, vol. 58, no. 4, pp. 396–403, doi: https://doi.org/10.1134/S1063771012040070)
[3] Efimtsov B.M., Lazarev L.A. Complex of analytical models for predicting noise in an aircraft cabin. Akusticheskiy zhurnal, 2012, vol. 58, no. 4, pp. 443–449. (In Russ.). (Eng. version: Acoust. Phys., 2012, vol. 58, no. 4, pp. 404–410, doi: https://doi.org/10.1134/S1063771012040057)
[4] Efimtsov B.M., Lazarev L.A. Calculation of bulkhead vibrations in a supported shell simulating a plane fuselage. Akusticheskiy zhurnal, 2014, vol. 60, no. 5, pp. 518–525, doi: https://doi.org/10.7868/S0320791914040042 (in Russ.). (Eng. version: Acoust. Phys., 2014, vol. 60, no. 5, pp. 562–569, doi: https://doi.org/10.1134/S1063771014040046)
[5] Shustrov Yu.M., ed. Proektirovanie aviatsionnykh sistem konditsionirovaniya vozdukha [Design of aircraft systems for air conditioning]. Moscow, Mashinostroenie Publ., 2006. 382 p. (In Russ.).
[6] Baklanov V.S. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines. Akusticheskiy zhurnal, 2016, vol. 62, no. 4, pp. 451–456, doi: https://doi.org/10.7868/S0320791916040043 (in Russ.). (Eng. version: Acoust. Phys., 2016, vol. 62, no. 4, pp. 456–461, doi: https://doi.org/10.1134/S1063771016040047)
[7] Munin A.G., ed. Aviatsionnaya akustika. T. 2. Shum v salonakh passazhirskikh samoletov [Aviation acoustics. Vol. 2. Noise in aircraft passenger cabin]. Moscow, Mashinostroenie Publ., 1986. 258 p. (In Russ.).
[8] Deaconu M., Cican G., Toma A-C. et al. Helicopter inside cabin acoustic evaluation: a case study — IAR PUMA 330. Int. J. Environ. Res. Public Health, 2021, vol. 18, no. 18, art. 9716. doi: https://doi.org/10.3390/ijerph18189716
[9] Golubev A.Yu., Potokin G.A. [Determination of acoustic loads on MS-21 mechanisation elements under conditions of ground races]. Tez. dok. shestoy otkrytoy vseros. konf. po aeroakustike [Abs. 6th Open Russ. Conf. on Aeroacoustics]. Moscow, TsAGI Publ., 2019, pp. 232–233. (In Russ.).
[10] Baklanov V.S. Vibroacoustics of aircraft with engines of a new generation (Problems and solutions). Uchenye zapiski fizicheskogo fakulteta moskovskogo universiteta, 2017, no. 5, art. 1741401. URL: http://uzmu.phys.msu.ru/file/2017/5/1751401.pdf (in Russ.).
[11] Barysheva D.V., Gordon S.V., Kim N.V. et al. [Development of calculation-experimental approach to durability analysis of aircraft structures exposed to increased acoustic loads]. Sbornik tezisov vserossiyskogo aeroakusticheskogo foruma [Abs. Russ. Aeroacoustic Forum]. Gelendzhik, 2021, pp. 217–219. (In Russ.).
[12] Dubinskiy S.V., Sevastyanov F.S., Kostenko V.M. et al. Impact damage influence investigations on the composite skin-stringer joint fatigue characteristics under conditions of vibroacoustic loading. Akusticheskiy zhurnal, 2023, vol. 69, no. 2, pp. 261–269, doi: https://doi.org/10.31857/S0320791922600512 (in Russ.). (Eng. version: Acoust. Phys., 2023, vol. 69, no. 2, pp. 270–277, doi: https://doi.org/10.1134/S1063771023700616)
[13] Moshkov P.A. Problems of civil aircraft design with regard to cabin noise requirements. Vestnik MAI [Aerospace MAI Journal], 2019, vol. 26, no. 4, pp. 28–41, doi: https://doi.org/10.34759/vst-2019-4-28-41 (in Russ.).
[14] Zverev A.Ya., Chernykh V.V. Experimental determination of acoustic and vibroacoustic characteristics of multilayer composite panels. Akusticheskiy zhurnal, 2018, vol. 64, no. 6, pp. 727–736, doi: https://doi.org/10.1134/S0320791918060151 (in Russ.). (Eng. version: Acoust. Phys., 2018, vol. 64, no. 6, pp. 750–759, doi: https://doi.org/10.1134/S1063771018060143)
[15] Zverev A.Ya., Chernykh V.V. Determining acoustic efficiency of materials and structures in laboratory and real conditions. Part 1: Sound absorption and sound insulation. Uchenye zapiski TsAGI, 2018, vol. 49, no. 8, pp. 40–55. (In Russ.). (Eng. version: TsAGI Science Journal, 2018, vol. 49, no. 8, pp. 841–859, doi: https://doi.org/10.1615/TsAGISciJ.2018029529)
[16] Zverev A.Ya., Semenova L.P. Determination of the acoustic efficiency of materials and structures in laboratory and real conditions. Part 2: Vibration absorption. Uchenye zapiski TsAGI, 2019, vol. 50, no. 1, pp. 43–56. (In Russ.). Eng. version: TsAGI Science Journal, 2019, vol. 50, no. 1, pp. 53–69, doi: https://doi.org/10.1615/TsAGISciJ.2019030190)
[17] Zverev A.Ya., Lesnykh T.O., Paranin G.V. Investigation of the efficiency of application of a vibration-absorbing material with a reinforcing layer for improving sound insulation of structural elements of the fuselage. Uchenye zapiski TsAGI, 2016, vol. 47, no. 2, pp. 82–92. (In Russ.). (Eng. version: TsAGI Science Journal, 2016, vol. 47, no. 2, pp. 223–236, doi: https://doi.org/10.1615/TsAGISciJ.2016017888)
[18] Li C., Lu Y., Lan C., Wang Y. Noise reduction in helicopter cabins using microperforated panel composite sound absorption structures. Appl. Sci., 2023, vol. 13, no. 14, art. 8153, doi: https://doi.org/10.3390/app13148153
[19] Bies D.A., Hansen C.H. Engineering noise control. CRC Press, 2009. 748 p.
[20] Johnescu J.R. Modeling aircraft cabin noise. Occupational Health & Safety, 2003. URL: https://ohsonline.com/Articles/2003/07/Modeling-Aircraft-Cabin-Noise.aspx
[21] Nagaraj P., Elmenshawy A.A.A.E., Alomar I. Vibroacoustic soundproofing for helicopter interior. Aviation, 2023, vol. 27, no. 1, pp. 57–66, doi: https://doi.org/10.3846/aviation.2023.18629
[22] Rumpler R. Efficient finite element approach for structural-acoustic applicationns including 3D modelling of sound absorbing porous materials. Doctoral thesis. Royal Institute of Technology, 2012. 224 p.
[23] Kopyev V.F., Chernyshev S.L. [Development of methods of computational aeroacoustics in TsAGI]. Tr. shestoy mezhd. konf. Parallelnye vychisleniya i zadachi upravleniya PACO’2012. T. 3 [Proc. 6th Int. Conf. on Parallel Computing and Control Problems RASO’2012. Vol. 3]. Moscow, IPU RAN Publ., 2012, pp. 254–265. (In Russ.).
[24] Teuma Tsafack F., Kochan K., Kletschkowski T. et al. Validation of the acoustic finite element model of a very light jet cavity mock-up. COMSOL, 2008. 7 p.
[25] Ripetskiy A.V. CALS based acoustic life prediction to an aircraft skin. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula state university. Technical sciences], 2012, no. 9, pp. 246–250. (In Russ.).
[26] Dubinskiy S.V., Sevastyanov F.S., Kostenko V.M. et al. A computational and experimental study of the effect of vibroacoustic loads on the structural performance of composite skin-stringer joint. Akusticheskiy zhurnal, 2019, vol. 65, no. 4, pp. 460–470, doi: https://doi.org/10.1134/S032079191904004X (in Russ.). (Eng. version: Acoust. Phys., 2019, vol. 65, no. 4, pp. 359–368, doi: https://doi.org/10.1134/S1063771019040043)
[27] Barysheva D.V., Nikitin E.A., Kim N.V. et al. Implementation of a set of works to ensure acoustic strength of a modern passenger aircraft with composite materials and a domestically produced engine. URL: https://www.aviationunion.ru/upload/iblock/3d0/wbfapm9n5ab9ry3vum0aca73czrjjzku/Rabota_Korporatsiya-Irkut_i-FAU-TSAGI.pdf (accessed: 15.06.2024). (In Russ.).
[28] Arenas J.P., Crocker M.J. Recent trends in porous sound-absorbing materials. J. Sound Vib., 2010, vol. 44, no. 7, pp. 12–17.
[29] Zimcik D.G. Active control of aircraft cabin noise. RTO AVT Symposium on Habitability of Combat and Transport Vehicles: Noise, Vibration and Motion, 2004, art. RTO-MP-AVT-110. 17 p.
[30] Malte M. Experiments on noise reduction in aircraft with active sidewall panels Hiroshima Calling, 2018, vol. 2. URL: https://elib.dlr.de/121168/1/ICSV25_Misol.pdf (accessed: 15.06.2024).
[31] Asarudheen Abdudeen, Jaber E. Abu Qudeiri, Aiman Ziout, Thanveer Ahammed. Design of acoustic metamaterials for cabin noise reduction and pressure sensing in propfan aircrafts. ASME 2020 Pressure Vessels & Piping Conf., 2020, paper PVP2020-21793, V003T03A010, doi: https://doi.org/10.1115/PVP2020-21793
[32] Zverev A.Ya. Noise control mechanisms of inside aircraft. Akusticheskiy zhurnal, 2016, vol. 62, no. 4, pp. 474–479, doi: https://doi.org/10.7868/S0320791916040183 (in Russ.). (Eng. version: Acoust. Phys., 2016, vol. 62, no. 4, pp. 478–482, doi: https://doi.org/10.1134/S1063771016040187)
[33] Griffin J.R. The control of interior cabin noise due to a turbulent boundary layer noise excitation using smart foam elements. Master thesis. Virginia Tech, 2006. 102 p.
[34] Belov V.D., Migun Yu.G., Orlov A.I. A hybrid active-passive sound absorber. Akusticheskiy zhurnal, 2012, vol. 58, no. 4, pp. 419–424. (Eng. version: Acoust. Phys., 2012, vol. 58, no. 4, pp. 381–386, doi: https://doi.org/10.1134/S1063771012040033)
[35] Cobo P., Cuesta M. Hybrid passive-active absorption of a microperforated panel in free field conditions. J. Acoust. Soc. Am., 2007, vol. 121, no. 6, pp. 251–255, doi: https://doi.org/10.1121/1.2739112
[36] Bolton J.S., Song J. Sound absorption characteristics of membrane-based sound absorbers. Proc. Inter-Noise 2003, paper N286. URL: http://docs.lib.purdue.edu/herrick/25 (accessed: 15.06.2024).
[37] Aksenov A.A., Gavrilyuk V.N., Timushev S.F. Numerical simulation of tonal fan noise of computers and air conditioning systems. Akusticheskiy zhurnal, 2016, vol. 62, no. 4, pp. 442–450, doi: https://doi.org/10.7868/S0320791916040018 (in Russ.). (Eng. version: Acoust. Phys., 2016, vol. 62, no. 4, pp. 447–455, doi: https://doi.org/10.1134/S1063771016040011)
[38] Rukovodstvo po raschetu i proektirovaniyu shumoglusheniya ventilyatsionnykh ustanovok [Guidelines for calculation and design of noise attenuation of air handling units]. Moscow, Stroyizdat Publ., 1982. 87 p. (In Russ.).
[39] Efimtsov B.M., Lazarev L.A. The possibility of reducing the noise produced in an airplane cabin by the turbulent boundary layer by varying the fuselage stiffening set with its mass being invariant. Akusticheskiy zhurnal, 2015, vol. 61, no. 5, pp. 631–635, doi: https://doi.org/10.7868/S0320791915040048 (in Russ.). (Eng. version: Acoust. Phys., 2015, vol. 61, no. 5, pp. 580–584, doi: https://doi.org/10.1134/S1063771015040041)