Evaluation of the Influence of the Perforated Stabilizer Permeability on the Total Pressure Losses in the Fas Path
Authors: Kulakov N.N., Chernyshev A.V., Krutikov A.A. | Published: 06.08.2015 |
Published in issue: #8(665)/2015 | |
Category: Calculation and Design of Machinery | |
Keywords: gas path, stabilizer, total pressure loss, perforation, turbulence model |
The article presents calculations and theoretical studies of the total pressure losses in the gas path working fluid using modern software tools. The influence of the stabilizer perforation on the total pressure losses is studied. The rationale behind the choice of a turbulence model as well as the test calculations and comparison with experimental data are presented. It is shown that the stabilizer permeability, which depends on the perforation area, has virtually no effect on the total pressure losses in the gas path. The results obtained are relevant for industries associated with the development of new designs incorporating airgas channels with inner bluff bodies.
References
[1] Vostokov V.Iu., Kliachko L.A. Aerodinamicheskie kharakteristiki perforirovannykh stabilizatorov plameni [Aerodynamic characteristics of perforated flame stabilizer]. TsIAM Trudy № 1307 [CIAM Proceedings no. 1307]. Moscow, TsIAM publ., 2002, pp. 90–105.
[2] Belova O.V., Volkov V.Iu., Skibin A.P., Nikolaeva A.V., Krutikov A.A., Chernyshev A.V. Metodologicheskie osnovy CFD-raschetov dlia podderzhki proektirovaniia pnevmogidravlicheskikh system [Methodological basis for CFD calculations to support pneumatic-hydraulic systems designing]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2013, iss. 5. Available at: http://engjournal.ru/catalog/ machin/vacuum/763.html (accessed 10 May 2015).
[3] Nikolaeva A.V., Skibin A.P., Chernyshev A.V., Belova O.V., Krutikov A.A. Povyshenie effektivnosti pnevmaticheskikh sistem s ustroistvami gasheniia pul’satsii davleniia [Efficiency increasing of the pneumatic systems with pressure pulsation dampener devices]. Kompressornaia tekhnika i pnevmatika [Compressors & Pneumatics]. 2012, no. 4, pp. 34–40.
[4] Nikolaeva A.V., Skibin A.P., Chernyshev A.V., Demikhov K.E., Belova O.V., Krutikov A.A. K voprosu o prognozirovanii amplitud pul’satsii davleniia v sistemakh truboprovodov [To the Question on Prediction of Pressure Pulsation Amplitudes in Pipeline Systems]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroeniia [Herald of the Bauman Moscow State Technical University. Mechanical Engineering]. 2012, no. 3, pp. 3–16.
[5] Nikolaeva A.V., Chernyshev A.V., Skibin A.P., Kiurdzhiev Iu.V., Belova O.V., Krutikov A.A. Issledovanie rabochikh protsessov v pnevmaticheskikh sistemakh s ustroistvami gasheniia pul’satsii davleniia [Research work processes in pneumatic systems with pressure pulsation damping devices]. Kompressornaia tekhnika i pnevmatika [Compressors & Pneumatics]. 2012, no. 5, pp. 42–48.
[6] Raushenbakh B.V. Fizicheskie osnovy rabochego protsessa v kamerakh sgoraniia vozdushno-reaktivnykh dvigatelei [Physical basis of the working process in the combustion chambers of jet engines]. Moscow, Mashinostroenie publ., 1964. 526 p.
[7] Idel’chik I.E. Spravochnik po gidravlicheskim soprotivleniiam [Handbook of hydraulic resistance]. Moscow, Mashinostroenie publ., 1992. 672 p.
[8] ANSYS CFX–Solver Theory Guide, 2011. 418 p.
[9] Solokhin E.L. Issledovanie rasprostraneniia i stabilizatsii plameni za korytoobraznym stabilizatorom [Propagation and flame stabilization of the trough-shaped stabilizer]. Sb. st. Stabilizatsiia plameni i razvitie protsessa sgoraniia v turbulentnom potoke [Collection of articles flame stabilization and development of the combustion process in a turbulent flow]. Moscow, Oborongiz publ., 1961, pp. 48–74.