Numerical Analysis of Specific Features of Droplet Breaking and Evaporation in Gas Dynamic Flow with Cyclic Shock Waves
Authors: Arefyev K.Yu., Voronetskiy A.V., Suchkov S.A. | Published: 29.10.2015 |
Published in issue: #10(667)/2015 | |
Category: Calculation and Design of Machinery | |
Keywords: two-phase flow, mathematical simulation, droplet breaking, droplet evaporation, shock wave |
A High-enthalpy flow generators (HEFG) have a wide range of applications in modern power systems, aircraft engines and technological installations. In a number of HEFGs the fuel mixture consists of liquid fuel and gaseous oxidizer. The study of the existing literature shows that the problem of developing a non-electric, reliable and environmentally friendly system of initiating working process in a HEFG is considered a key challenge. To solve the problem, a gas dynamic ignition system (GIS) is proposed, where the fuel is supplied in the liquid phase state, and the oxidizer in the gaseous state. The existing methods of the liquid phase ignition in the oxidizing environment on the resonator outer surface are not effective; they have long ignition time delays and limited applications. It warrants the development of a GIS with volume ignition of droplet aerosol of liquid fuel in the gaseous oxidizer inside the resonant cavity. To solve the specified problem, a series of investigations involving the study of fuel mixing and macro kinetic processes in GIS are required. The article presents a mathematical model and results of the numerical simulation of specific features of non-stationary gas dynamic flow as well as droplet breaking and evaporation processes in the GIS passage. The results obtained can be used when designing gas dynamic ignition systems for HEFGs.
References
[1] Tsentral’nyi institut aviatsionnogo motorostroeniia im. P.I. Baranova. 75 let tvorcheskoi nauchno-prakticheskoi deiatel’nosti v aviadvigatelestroenii [Central Institute of Aviation Motors n.a. P.I. Baranov. 75 years of creative scientific activity in aircraft engine design]. Ed. Skibin V.A. Moscow, Aviamir publ., 2005. 656 p.
[2] Voronetskii A.V., Aref’ev K.Iu., Zakharov V.S. Raschetno-teoreticheskoe issledovanie rezonansnoi sistemy gazodinamicheskogo vosplameneniia ZhRD maloi tiagi [Computational-Theoretical Study of Resonant System of Gasdynamical Ignition for Low-Thrust Liquid-Propellant Rocket Engines]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Mechanical Engineering]. 2012, no. 1, pp. 31–41.
[3] Voronetskii A.V., Polianskii A.R., Aref’ev K.Iu. Chislennyi analiz nekonservativnykh akusticheskikh sistem primenitel’no k ustroistvam initsiatsii rabochego protsessa v generatorakh vysokoental’piinykh potokov [Numerical analysis of non-conservative acoustic systems for working process initialization devices in high-enthalpy flow generators]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education. BMSTU]. Available at: http://www.technomag.edu.ru/doc/339499.html. 77-30569/339499 (accessed 15 Mach 2012).
[4] Vasilov R.G. Perspektivy razvitiia proizvodstva biotopliva v Rossii [Prospects for the development of biofuel production in Russia]. Vestnik biotekhnologii i fiziko-khimicheskoi biologii im. Iu.A. Ovchinnikova [Bulletin of biotechnology and physical and chemical biology named after Y.A. Ovchinnikov]. 2007, vol. 3, no. 1, pp. 47–54.
[5] Shpak B.C., Shapovalov O.I., Kartashov Iu.I., Rumiantsev V.N., Serdiuk V.V., Asheinazi L.A. Toplivnyi etanol i ekologiia [Fuel Ethanol and ecology]. Khimicheskaia promyshlennost’ [Russian Chemical Industry]. 2006, vol. 83, no. 2, pp. 89–96.
[6] Kim S., Dale B.E. Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions. Biomass and Bioenergy, 2005, vol. 28, pp. 475–489.
[7] Voronetskii A.V., Suchkov S.A., Filimonov L.A. Osobennosti techeniia sverkhzvukovykh dvukhfaznykh potokov produktov sgoraniia v kanalakh so spetsial’no formiruemoi sistemoi skachkov uplotneniia [Peculiarities of high-temperature two-phase flow of combustion products in channels with an intentionally structured system of shock-waves]. Teplofizika i aeromekhanika [Thermophysics and Aeromechanics]. 2007, vol. 14, no. 2, pp. 209–218.
[8] Ortiz C., Joseph D.D., Beavers G.S. Acceleration of a liquid drop suddenly exposed to a high-speed airstream. International Journal of Multiphase Flow, 2004, v. 30, pp. 217–224.
[9] Boiko V.M., Poplavski S.V. Experimental study of two types of stripping breakup of the drop in the flow behind the shock wave. Combustion, Explosion, and Shock Waves, 2012, vol. 48, no. 4, pp. 440–445.
[10] Kucharika M., Shashkov M. Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics, 2014, v. 258, pp.268–304.
[11] Gel’fand B.E., Vieilli B., Gekalp I., Chauveau C. Shock-Free Breakup of Droplets. Temporal Characteristics. Journal of Applied Mechanics and Technical Physics, 2001, vol. 42, no. 1, pp. 63–66.
[12] Theofanous T.G., Li G.J. On the Physics of Aerobreakup. Physics of Fluids, 2008, v. 20, 14 p.
[13] Aref’ev K.Iu., Voronetskii A.V. Modelirovanie protsessa drobleniia i ispareniia kapel’ nereagiruiushchei zhidkosti v vysokoental’piinykh gazodinamicheskikh potokakh [Simulation of the process of splitting and evaporation of liquid droplets unresponsive in high-enthalpy gas-dynamic flows]. Teplofizika i aeromekhanika [Thermophysics and Aeromechanics]. 2015, vol. 22, no. 4, рр. 613–624.
[14] Dolgomatov D.A. Gorenie odinochnykh i parnykh kapel’ zhidkogo topliva pri bystrom isparenii [Combustion single and paired liquid fuel droplets in rapid evaporation]. Vestnik dvigatelestroeniia [Bulletin engine]. 2013, no. 2, pp. 158–162.
[15] Glaznev V.N., Korobeinikov Yu.G. Hartmann Effect. Region of Existence and Oscillation Frequencies. Journal of Applied Mechanics and Technical Physics, 2001, vol. 42, no. 4, pp. 616–620.
[16] Aleksandrov V.Iu., Aref’ev K.Iu., Il’chenko M.A. Raschetno-eksperimental’nye issledovaniia pul’satsionnykh protsessov v malogabaritnykh generatorakh vysokoental’piinogo potoka s gazodinamicheskoi sistemoi vosplameneniia [Numerical And Experimental Investigation Non-Stationary Processes In The Compact High Enthalpy Flows Generators With Gasdynamically Ignition System]. Izvestiia RAN. Energetika [Russian Academy of Sciences. Power]. 2014, no. 6, pp. 96–107.