Evaluation of Moduli of Elasticity for Composite with Lamellar Inclusions
Authors: Zarubin V.S., Kuvyrkin G.V., Savelyeva I.U. | Published: 19.11.2015 |
Published in issue: #11(668)/2015 | |
Category: Calculation and Design of Machinery | |
Keywords: composite, isotropic lamellar inclusions, modulus of elasticity, self-coordination method |
This article presents a mathematical model that describes the interaction between the elements of the composite structure and the isotropic elastic medium. The moduli of elasticity of the medium are subject to determination as the required characteristics of the composite. Using the self-coordination method, a system of matrix ratios is obtained. It determines a non-linear connection between the required moduli of the composite and the volume concentration of inclusions, their elastic properties and elastic characteristics of the matrix. The variational approach is used to determine bilateral limits of possible values for the volume modulus of elastisity and shear modulus. The presented calculations can be used to predict elastic characteristics of a composite material reinforced by isotropic lamellar inclusions, including those in the form of nanostructed elements.
References
[1] Shermergor T.D. Teoriia uprugosti mikroneodnorodnykh sred [The theory of elasticity of micro environments]. Moscow, Nauka publ., 1977. 400 p.
[2] Sendetski Dzh. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, Mir publ., 1978. 564 p.
[3] Kristensen R. Vvedenie v mekhaniku kompozitov [Mechanics of Composite Materials]. Moscow, Mir publ., 1982. 336 p.
[4] Vanin G.A. Mikromekhanika kompozitsionnykh materialov [Micromechanics of composite materials]. Kiev, Naukova dumka publ., 1985. 302 p.
[5] Arzamasov B.N., Krasheninnikov A.I., Pastukhova Zh.P., Rakhshtadt A.G. Nauchnye osnovy materialovedeniia [Scientific basis of materials]. Moscow, Bauman Press, 1994. 366 p.
[6] Van Flek L. Teoreticheskoe i prikladnoe materialovedenie [Theoretical and Applied Materials]. Moscow, Atomizdat publ., 1975. 472 p.
[7] Cahn R.W., Haasen P. Physical Metallurgy, 4 ed., North Holland, 1996, vol.2, 2888 p. (Russ. ed.: Kan R. Fizicheskoe metallovedenie. Moscow, Mir publ., 1968, vol. 2, 492 p).
[8] Kalinchev V.A., Iagodnikov D.A. Tekhnologiia proizvodstva raketnykh dvigatelei tverdogo topliva [Technology of production of solid propellant rocket motors]. Moscow, Bauman Press, 2011. 688 p.
[9] Komkov M.A., Tarasov V.A. Tekhnologiia namotki kompozitnykh konstruktsii raket i sredstv porazheniia [Winding technology of composite structures of missiles and weapons]. Moscow, Bauman Press, 2011. 432 p.
[10] Kats E.A. Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaia form i idei [Fullerenes, carbon nanotubes and nanoclusters. Genealogy forms and ideas]. Moscow, LKI publ., 2008. 296 p.
[11] Stankovich S., Dikin D.A., Dommett G.H.B, Kohlhaas K.M., Zimmey E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature, 2006, vol. 442, pp. 282–286.
[12] Chen Zh., Lin Yu.M., Rooks M.J., Avouris Ph. Graphene nano-ribbon electronics. Phisica E: Low-Dimensional Systems and Nanostructures, 2007, vol. 40, pp. 228–232.
[13] Eletskii A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. Grafen: metody polucheniia i teplofizicheskie svoistva [Graphene: fabrication methods and thermophysical properties]. Uspekhi fizicheskikh nauk [Advances in Physical Sciences]. 2011, t. 181, 3, s. 233–268.
[14] Berinskii I.E., Krivtsov A.M. On using many-particle interatomic potentials to compute elastic properties of graphene and diamond. Mechanics of Solids, 2010, vol. 45, no. 6, pp. 815–834.
[15] Erdemir A., Martin J.-M. Eds. Superlubricity. Amsterdam, Elsevier, 2007. 524 p.
[16] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Dvustoronnie otsenki effektivnoi teploprovodnosti kompozita s anizotropnymi plastinchatymi vkliucheniiami [Two-sided Estimates of Effective Thermal Conductivity of the Composite with Anisotropic Lamellar Inclusions]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 11, doi: 10.7463/1114.0737893. Available at: http://technomag.bmstu.ru/doc/737893.html (accessed 01 September 2015).
[17] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Teploprovodnost’ teksturirovannogo kompozita s anizotropnymi plastinchatymi vkliucheniiami [Thermal Conductivity of the Textured Composite with Anisotropic Lamellar Inclusions]. Kompozity i nanostruktury [Composites and nanostructures]. 2015, vol. 22, no. 1, pp. 1–13.
[18] Eshelbi Dzh. Kontinual’naia teoriia dislokatsii [The continuum theory of dislocations]. Moscow, Izd-vo inostr. lit. publ., 1963. 248 p.
[19] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Sravnitel’nyi analiz otsenok modulei uprugosti kompozita. Izotropnye sharovye vkliucheniia [Comparative analysis estimates of elastic moduli for composite. Isotropic spherical inclusions]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2014, no. 5, pp. 53–69.
[20] Dimitrienko Iu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, Vysshaia shkola publ., 2001. 576 p.
[21] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Sravnitel’nyi analiz otsenok modulei uprugosti kompozita. Anizotropnye sharovye vkliucheniia [Comparative analysis modulus elasticity estimates for composite anisotropic spherical inclusions]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2014, no. 6, pp. 20–31.
[22] [Tsvelodub I.Iu. Ob obratnom tenzore Eshelbi [On the inverse tensor of Eshelby]. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo instituta im. I.Ia. Iakovleva. Ser. Mekhanika predel’nogo sostoianiia [I. Yakovlev Chuvash State Pedagogical University Bulletin. Ser. Mechanics limit States]. 2010, no. 2(8), pp. 530–535.
[23] Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 1965, vol. 13, no. 4, pp. 213–222.
[24] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. Smesevye modeli mekhaniki kompozitov. Ch. 1. Termomekhanika i termouprugost’ mnogokomponentnoi smesi [Mixture Models of Composite Mechanics. P. 1. Thermal Mechanics and Thermoelasticity of Multicomponent Mixture]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences]. 2009, no. 3, pp. 36–49.
[25] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoi sredy [Mathematical models of mechanics and electrodynamics of continuous media]. Moscow, Bauman Press, 2008. 512 p.