The Study of Soundproof Properties of a Three-Layer Plate under the Influence of a Plane Wave
Authors: Lokteva N.A., Serdyuk D.O., Tarlakovskiy D.V. | Published: 20.01.2016 |
Published in issue: #1(670)/2016 | |
Category: Calculation and Design of Machinery | |
Keywords: infinite sandwich plates, honeycomb, acoustic environment, plane wave, Fourier transform, soundproofing |
The authors study the soundproof properties of an infinite plate surrounded on two sides by acoustic environments under the effect of a plane harmonic wave. The plate has a complex three-layer structure where the bearing layers are isotropic elastic, and the filler is orthotropic, with honeycomb configuration. To describe the plate motion, new refined equations are used that take into account geometrical parameters of the plate, compression and shear of the filler layers. To solve the problem, the exponential Fourier transform is applied, which yields an expression for determining the pressure amplitude of a wave transmitted through the barrier. The connection between kinematic parameters of the plate and the amplitudes of the incoming and outgoing waves is established considering an auxiliary problem of wave radiation from the half-space boundary. A parametric algorithm is presented for modelling the process of oscillation absorption by an infinite three-layer plate under the effect of a plane incoming wave where the parameters are physical and mechanical properties of the three-layer plate materials and the acoustic environments as well as geometrical parameters of the bearing layers and the filler. Examples of the calculations are given.
References
[1] Alumiae N. A. Teoriia uprugikh obolochek i plastinok. Mekhanika deformiruemogo tverdogo tela [Theory of elastic shells and plates. Fracture Mechanics]. Moscow, Nauka publ., 1972. 480 p.
[2] Park J., Mongeau L. Vibration and sound radiation of viscoelastically supported Mindlin plates. Journal of Sound and Vibration, 2008, vol. 318, no. 4–5, pp. 1230–1249.
[3] Pico R., Gautier F. The vibroacoustics of slightly distorted cylindrical shells: A model of the acoustic input impedance. Journal of Sound and Vibration, 2007, vol. 302, no. 1–2, pp. 18–38.
[4] Plaut R.H., Cotton S.A. Two-dimensional vibrations of air-filled geomembrane tubes resting on rigid or deformable foundations. Journal of Sound and Vibration, 2005, vol. 282, no. 1–2, pp. 265–276.
[5] Ruzzene M. Vibration and sound radiation of sandwich beams with honeycomb truss core. Journal of Sound and Vibration, 2004, vol. 277, no. 4–5, pp. 741–763.
[6] Stamm K., Witte H. Sandwichkonstruktionen. Berechnung, Fertigung, Ausführung. Wien–New York, Springer-Verlag, 1974. 337 p.
[7] Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh [Waves in continuous media]. Moscow, FIZMATLIT publ., 2004. 472 p.
[8] Igumnov L.A., Lokteva N.A., Paimushin V.N., Tarlakovskii D.V. Zvukoizoliatsionnye svoistva odnomernoi trekhsloinoi plastiny [Sound Insulation Properties of One-Dimensional Three-Layered Plate]. Matematicheskie metody i fiziko-mekhanicheskie polia [Mathematical Methods and Physicomechanical Fields]. 2013, vol. 56, no. 2, pp. 86–93.
[9] Lokteva N.A., Serdiuk D.O., Tarlakovskii D.V. Vliianie formy nabegaiushchei volny na zvukoizoliatsionnye svoistva priamougol’noi plastiny slozhnoi struktury [Influence of form rolling wave on a rectangular plate sound insulation properties of complex structure]. Trudy MAI [Proceedings MAI]. 2015, no. 82. Available at: http://www.mai.ru/upload/iblock/c2b/lokteva_serdyuk_tarlakovskiy_rus.pdf (accessed 15 October 2015).
[10] Gradshtein I.S., Ryzhik I.M. Tablitsy integralov, summ, riadov i proizvedenii [Tables of integrals, sums, series and products]. Moscow, Nauka publ., 1971. 1108 p.
[11] Ivanov V.A., Paimushin V.N. Utochnennaia postanovka dinamicheskikh zadach trekhsloinykh obolochek s transversal’no-miagkim zapolnitelem chislenno-analiticheskii metod ikh resheniia [Refined production of dynamic problems of sandwich shells with transversal-soft aggregate numerical-analytical method of solving them]. Prikladnaia mekhanika i tekhnicheskaia fizika [Journal of Applied Mechanics and Technical Physics]. 1995, vol. 36, no. 4, pp. 147–151.
[12] Ivanov V.A., Paimushin V.N. Utochnenie uravnenii dinamiki mnogosloinykh obolochek s transversal’no-miagkim zapolnitelem [Clarification of equations of the dynamics of multilayer shells with transversally soft filler]. Izvestiia RAN. MTT [Mechanics of Solids]. 1995, no. 3, pp. 142–152.
[13] Abramovits M., Stigan I. Spravochnik po spetsial’nym funktsiiam s formulami, grafikami i matematicheskimi tablitsami [Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]. Moscow, Nauka publ., 1979. 832 p.