The Effect of Variation in Electromagnetic Parameters of the Phases on Commutation Processes in Switched Reluctance Motors
Authors: Krasovsky A.B., Kuznetsov S.A. | Published: 09.06.2016 |
Published in issue: #6(675)/2016 | |
Category: Calculation and Design of Machinery | |
Keywords: switched reluctance motor, variation of electromagnetic parameters of the phases, shape and amplitude of the phase current, consideration of nonlinear properties, simulation, rotor position sensor control, sensorless control |
The effect of the deviation of electromagnetic parameters of the phases from their calculated values on commutation processes is considered in this article. The deviation occurs due to technological errors when manufacturing switched reluctance motors (SRM). It is shown that these deviations can cause uncontrollable changes in the shape and amplitude of phase currents in a motor, and trigger a further increase of the pulsating component of electromagnetic torque. Simple and practical criteria are proposed for evaluating the tendencies of change in the shape of SRM phase current at the working section of the motor single switch cycle where the majority of electromagnetic torque is generated. Using simulation in the MATLAB-SIMULINK environment these results are consolidated and extended to a SRM with standard parameters that uses rotor position sensor control, and to a SRM with a more widely used sensorless control type when the rotor position at the switching moment is determined indirectly.
References
[1] Miller T.J.E. Electronic control of switched reluctance machines. Oxford, Newnes, 2001. 272 p.
[2] Krishnan R. Switched reluctance motor drives: modeling, simulation, design and applications. CRC Press LLC, 2001. 432 p.
[3] Jin-Woo Ahn. Torque Control Strategy for High Performance SR Drive. Journal of Electrical Engineering & Technology, 2008, vol. 3, no. 4, pp. 538–545.
[4] Bychkov M.G. Elementy teorii ventil’no-induktornogo elektroprivoda [Elements of the switched reluctance drive theory]. Elektrichestvo [Electrical Technology Russia]. 1997, no. 8, pp. 35–44.
[5] Jianzhong Sun, Fengxian Bai, Wei Lou, Feiran Sun. Direct Instantaneous Torque Control Combined with Torque Sharing Function Strategy for Switched Reluctance Drive. Third International Conference on Intelligent Control and Information Processing July 15–17, 2012, China, Dalian, pp. 386–389.
[6] Bychkov M.G. Optimizatsiia rezhimov ventil’no-induktornogo elektroprivoda sredstvami upravleniia [Optimization of modes of valve-inductor electric controls]. Vestnik MEI [MPEI Vestnik]. 1998, no. 3, pp. 73–81.
[7] Krasovskii A.B. Analiz uslovii formirovaniia postoianstva vykhodnoi moshchnosti v ventil’no-induktornom elektroprivode [An Analysis of Conditions for Forming a Constant Output Power in a Rectifier-Inductor Electric Drive]. Elektrichestvo [Electrical Technology Russia]. 2002, no. 2, pp. 36–46.
[8] Krasovskii A.B. Anomal’nye rezhimy v ventil’no-induktornom elektroprivode pri datchikovom variante upravleniia [Abnormal modes of Rectifier-and-Inductor Electric Motor Drive in Sensor Control]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2003, no. 2, pp. 85–103.
[9] Mikail R., Husain I., Islam M.S., Sozer Y., Sebastian T. Four-Quadrant Torque Ripple Minimization of Switched Reluctance Machine Through Current Profiling With Mitigation of Rotor Eccentricity Problem and Sensor Errors. IEEE Transactions on Industry Applications, 2015, vol. 51, no. 3, pp. 2097–2104.
[10] Lopes Oliveira E.S., Aguiar M.L., Nunes Da Silva I. Strategy to control the terminal voltage of a SRG based on the excitation voltage. IEEE Latin America Transactions, 2015, vol. 13, no. 4, pp. 975–981.
[11] Krasovskii A.B. Imitatsionnye modeli v teorii i praktike ven-til’no-induktornogo elektroprivoda. Diss. dokt. tekh. nauk [Simulation models in the theory and practice of valve-inductor electric. Dr. tech. sci. diss.]. Moscow, 2004. 321 p.
[12] Krasovskii A. B. Analiz protsessa otkliucheniia faznoi obmotki ventil’no-induktornogo dvigatelia pri lokal’nom nasyshchenii zubtsovoi zony [An analysis of the process of disconnecting the phase winding of an inductor motor having local saturation of the tooth zone]. Elektrichestvo [Electrical Technology Russia]. 2001, no. 5, pp. 41–48.
[13] Hossain S.A., Husain I., Klode H., Lequesne B., Omekanda A.M., Gopalakrishnan S. Four-quadrant and zero-speed sensorless control of a switched reluctance motor. IEEE Transactions on Industry Applications, 2003, vol. 39, no. 5, pp. 1343–1349.
[14] Kjaer P.C., Blaabjerg F., Pedersen J.K., Nielsen P., Andersen L. A New Indirect Rotor Position Detection Method for Switched Reluctance Drives. ICEM’94, vol. 2, Paris, 1994, pp. 555–560.
[15] Bychkov M.G. Osnovy teorii, upravlenie i proektirovanie ventil’no-induktornogo elektroprivoda. Diss. dokt. tekh. nauk. [Basic theory, management and design of valve-inductor electric. Dr. tech. sci. diss.]. Moscow, 1999. 38 p.
[16] Jakobsen U., Lu K., Rasmussen P.O., Lee D.-H. Sensorless Control of Low-Cost Single-Phase Hybrid Switched Reluctance Motor Drive. IEEE Transactions on Industry Applications, 2015, vol. 51, no. 3, pp. 2381–2387.