A Study of Longevity of Thin-Wall Rubber Sealing Elements in a Linear Hydraulic Drive
Authors: Mikhailov V.P., Deulin E.A. | Published: 11.07.2017 |
Published in issue: #7(688)/2017 | |
Category: Calculation and Design of Machinery | |
Keywords: linear hydraulic drive, longevity of a thin-wall rubber element, elastic fatigue fracture, dynamics of crack propagation |
The article describes a linear hydraulic drive based on thin-wall rubber elements (TRE) whose range of linear displacement is two times larger than the length of the element. The TREs also serve as sealing elements of the hydraulic drive. The main advantage of the TREs is negligible static resistance force that is less than that of the sealing bellows, which provides high accuracy of positioning. However, the TRE is one of the least lasting elements, and it determines reliability of the drive in general. Using theoretical and experimental data, equations for calculating TRE longevity in a vacuum and under differential pressure were obtained. The equations could also be used to determine a gas flow leaking through a crack in the TRE when the piston rod of a pneumatic or vacuum drive moves linearly.
References
[1] Mekhanika i fizika tochnykh vakuumnykh mekhanizmov [Mechanics and physics of precise vacuum mechanisms]. Ed. Deulin E.A. Vladimir, Vladimir State University publ., 2001, vol. 1. 176 p.
[2] Mekhanika i fizika tochnykh vakuumnykh mekhanizmov [Mechanics and physics of precise vacuum mechanisms]. Ed. Deulin E.A. Moscow, Intelvak, Vakuummash publ., 2002, vol. 2. 152 p.
[3] Mechanics and Physics of Precise Vacuum Mechanisms. Fluid Mechanics and its Applications. Ed. Moreau R., vol. 91, Springer, 2010. 234 p.
[4] Deulin E.A., Mikhailov V.P., Panfilov Y.V., Nevshupa R.A. Vacuum mechanisms of nanoscale precision. Fluid Mechanics and its Applications. 2010, vol. 91, pp. 137–166
[5] Borin D.Iu., Mikhailov V.P., Deulin E.A., Zobov I.K. Pretsizionnyi vakuumnyi modul’ lineinykh peremeshchenii s magnitoreologicheskim upravleniem [Precision vacuum module linear motion with magneto-rheological control]. Vakuumnaia tekhnika i tekhnologiia [Vacuum technics and technology]. 2007, vol. 17, no. 2, pp. 141–146.
[6] Anisimov V.V., Deulin E.A., Mikhailov V.P. Pretsizionnyi uzel postupatel’nogo peremeshcheniia [Precision component of the translational movement]. Patent RF no. 1743797. 1992.
[7] Anisimov V.V., Deulin E.A., Dokukin V.G., Kazakov A.F., Mikhailov V.P., Pron’kov M.A., Khokhlun A.R. Membrannyi uzel [Membrane node]. Patent RF no. 2037702, 1995.
[8] Veibull V. Ustalostnye ispytaniia i analiz ikh rezul’tatov [Fatigue testing and analysis of their results]. Moscow, Mashinostroenie publ., 1964. 275 p.
[9] Krainev A.F. Mekhanika mashin. Fundamental’nyi slovar’ [Mechanics of machines. Fundamental dictionary]. Moscow, Mashinostroenie publ., 2000. 904 p.
[10] Teoriia mekhanizmov i mekhanika mashin [Theory of mechanisms and mechanics of machines]. Ed. Timofeev G.A. Moscow, Bauman Press, 2012. 654 p.
[11] Gusev A.S. Teoreticheskie osnovy raschetov na soprotivlenie ustalosti [Theoretical basis for fatigue resistance calculations]. Moscow, Bauman Press, 2014. 46 p.
[12] Bobovich B.B. Nemetallicheskie konstruktsionnye materialy [Non-metallic materials]. Moscow, MGIU publ., 2009. 383 p.
[13] Potapova L.B., Iartsev V.P. Mekhanika materialov pri slozhnom napriazhennom sostoianii. Kak prognoziruiut predel’nye napriazheniia? [Mechanics of materials under complex stress state. How to predict the yield stress?]. Moscow, Mashinostroenie-1 publ., 2005. 244 p.
[14] Vodianik V.I. Elastichnye membrany [Elastic membrane]. Moscow, Mashinostroenie publ., 1974. 136 p.
[15] Popov D.N. Mekhanika gidro- i pnevmoprivodov [Mechanics, hydro- and pneumatic drives]. Moscow, Bauman Press, 2002. 320 p.