An Analysis of Crack Resistance of a Main Pipeline Taking into Account Residual Welding Stresses
Authors: Pokrovsky A.M., Dubovitskiy E.I. | Published: 11.07.2017 |
Published in issue: #7(688)/2017 | |
Category: Calculation and Design of Machinery | |
Keywords: main pipeline, residual welding stresses, operating stresses, finite element method, Irvine fracture criterion, crack resistance, critical depth of the crack |
This paper describes methods and software tools for evaluating crack resistance of a main pipeline in the zone of butt-welded joints when the pipeline is in operation. The author’s finite-element software developed in Fortran Visual environment is used to calculate residual welding stresses. The calculations are based on the principles of nonlinear nonstationary heat transfer, modelling of phase and structural transformations, and thermo-elasto-plasticity. Boundary conditions of the third kind are used to describe the heat transfer. The transformation of austenite into ferrite and bainite under non-isothermal conditions is predicted using the theory of isokinetic reactions. Residual stresses are modelled by solving the thermo-elasto-plasticity problem for a material with unsteady structure. It is shown that longitudinal semi-elliptic edge cracks located on the internal surface of the pipe near the weld are the most dangerous from the point of view of brittle strength. Irvine force criterion of fracture forms the basis of crack resistance calculations. The maximum stress intensity factor at the crack front in the pipeline is calculated using ANSYS finite-element software. The results of the crack resistance analysis are presented as dependencies of the critical depth of the crack on the ratio of the half the length to the depth.
References
[1] Cherepanov G.P. Mekhanika razrusheniia [Fracture mechanics]. Izhevsk, Institut komp’iuternykh issledovanii publ., 2012. 872 p.
[2] Feodos’ev V.I. Soprotivlenie materialov [Mechanics of materials]. Moscow, Bauman Press, 2016. 544 p.
[3] Moshchenko M.G., Rubtsov V.S., Korableva S.A. Termomekhanicheskii analiz protsessa mnogoprokhodnoi svarki soedineniia DU300 reaktora RBMK metodom konechnykh elementov [Thermomechanical analysis of multipass welding process for connection Du300 of RBMK reactor by method of final elements]. Voprosy materialovedeniia [Problems of materials science]. 2011, no. 4(68), pp. 105–115.
[4] Minkevich V.A., Fairushin A.M., Cherniat’eva R.R., Karetnikov D.V. Issledovanie napriazhenno-deformirovannogo sostoianiia trubnogo uzla martensitnoi stali 15Kh5M v protsesse diffuzionnoi svarki [Investigation of the stress-strain state of martensitic steel 15Cr5Мo tube site in the process of diffusion welding]. Elektronnyi nauchnyi zhurnal «Neftegazovoe delo» [The electronic scientific journal «Oil and Gas Business»]. 2013, no. 6, pp. 344–355. Available at: http://ogbus.ru/authors/MinkevichVA/MinkevichVA_1.pdf, doi: 10.17122/ogbus-2013-6-344-355 (accessed 15 March 2017).
[5] Kurkin A.S., Makarov E.L. Programmnyi kompleks «Svarka» – instrument dlia resheniia prakticheskikh zadach svarochnogo proizvodstva [Program complex «Welding» – help for practical tasks solving in welding engineering]. Svarka i diagnostika [Welding and Diagnostics]. 2010, no. 1, pp. 16–24.
[6] Christian J.W. The Theory of Transformations in Metals and Alloys. Pt. I, II. Pergamon, 2002. 1200 p.
[7] Makarov A.P., Shevchenko A.N., Pavlov A.M. Opredelenie kriticheskoi dliny treshchin v metallokonstruktsiiakh kar’ernykh ekskavatorov [Crack critical length determination in mining shovel metal structures]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University]. 2015, no. 12(107), pp. 57–63.
[8] Pokrovskii A.M. Termoprochnost’ tsel’nokovanykh i bandazhirovannykh prokatnykh valkov [Thermal resistance one-piece forged and bondarovna rolls]. Moscow, Bauman Press, 2017. 272 p.
[9] Tsvetkov F.F., Grigor’ev B.A. Teplomassoobmen [Heat and mass transfer]. Moscow, MEI publ., 2006. 550 p.
[10] Pokrovskii A.M., Avagimov S.S., Dubovitskii E.I. Raschet ekspluatatsionnykh napriazhenii v magistral’nom nefteprovode s uchetom ostatochnykh svarochnykh napriazhenii [The Calculation of Operating Stresses in the Main Oil Pipeline Taking into Account Residual Welding Stresses]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU]. 2016, no. 9, pp. 123–137. Available at: http://technomag.edu.ru/jour/article/view/1059/999, doi: 10.7463/0916.0846629 (accessed 15 March 2017).
[11] Diagrammy sostoianiia dvoinykh i mnogokomponentnykh sistem na osnove zheleza [State diagrams of double and multicomponent systems based on iron]. Ed. Bannykh O.A., Drits M.E. Moscow, Metallurgiia publ., 1986. 440 p.
[12] Pokrovskii A.M., Ryzhikov A.V. Matematicheskoe modelirovanie temperaturnogo i fazovo-strukturnogo sostoianii pri naplavke bimetallicheskogo prokatnogo valka [Mathematical simulation of the temperature and phase-structural states at surfacing the bimetallic mill roll]. Mashinostroenie i inzhenernoe obrazovanie [Mechanical engineering and engineering education]. 2016, no. 1, pp. 60–69.
[13] Popov A.A., Popova L.E. Spravochnik termista. Izotermicheskie i termokineticheskie diagrammy raspada pereokhlazhdennogo austenite [Handbook of heat-treater. Isothermal and thermokinetic diagrams of the collapse of the supercooled austenite]. Moscow, Mashgiz publ., 1961. 430 p.
[14] Demmel’ D. Vychislitel’naia lineinaia algebra: teoriia i prilozheniia [Computational linear algebra: theory and applications]. Moscow, Mir publ., 2001. 429 p.
[15] Guliaev, A.P., Guliaev, A.A. Metallovedenie [Metallography]. Moscow, ID Al’ians publ., 2011. 644 p.
[16] Bulatova A.Z., Zakharov M.N., Morozov E.M. Otsenka opasnosti rassloenii v metalle konstruktsii na osnove diagrammy treshchinostoikosti [Assessment of the risk of segregation in metal structures on the basis of crack resistance diagram]. Zavodskaia laboratoriia. Diagnostika materialov [Industrial Laboratory]. 2010, no. 3, pp. 41–46.