The Development and Validation of Engineering Methods of Calculating the Stress State of Spiral Tubes Loaded by Internal Pressure
Authors: Sorokina A.G. | Published: 24.10.2017 |
Published in issue: #10(691)/2017 | |
Category: Calculation and Design of Machinery | |
Keywords: spiral tube, helical symmetry, membrane theory, equilibrium equations, boiler formulas, least square method |
A simplified method of calculating stresses in spiral tubes under internal pressure was developed. It was shown that in most cases the coordinate lines on the middle surface of the tube could be approximated as lines of curvature. The membrane equilibrium equations in partial derivatives due to the helical symmetry were reduced to one ordinary differential equation for the membrane force acting along the helix. It transpired that the solution to the differential equation almost coincided with the result of the application of boiler formulas that used the normal radius of curvature of the helix. The engineering method was demonstrated on a spiral tube with a given ratio of sizes.
References
[1] Krivoshapko S.N. Geometry and strength of general helicoidal shells. Applied Mechanics Reviews, 1999, vol. 52, no. 5, pp. 161–175.
[2] Krivoshapko S.N. Static analysis of shells with developable middle surfaces. Applied Mechanics Reviews, 1998, vol. 51, no. 12, pt. 1, pp. 731–746.
[3] Khalabi S.M. Momentnaia teoriia tonkikh vintovykh psevdo-torsovykh obolochek [Moment theory of thin helical pseudo-tarcowie shells]. Stroitel’naia mekhanika inzhenernykh konstruktsii i sooruzhenii [Structural Mechanics of Engineering Constructions and Buildings]. 2001, no. 10, pp. 61–67.
[4] Rynkovskaia M.I. K voprosu o raschete na prochnost’ tonkikh lineichatykh vintovykh obolochek [On problem of strength analysis of thin linear helicoidal shells]. Stroitel’naia mekhanika inzhenernykh konstruktsii i sooruzhenii [Structural Mechanics of Engineering Constructions and Buildings]. 2015, no. 6, pp. 13–15.
[5] Rynkovskaia M.I. K voprosu rascheta priamykh gelikoidal’nykh obolochek po metodu V.G. Rekacha [To the question of the calculation of the direct helicoidal shells by the method of V.G. Rekach]. Stroitel’naia mekhanika inzhenernykh konstruktsii i sooruzhenii [Structural Mechanics of Engineering Constructions and Buildings]. 2006, no. 2, pp. 63–66.
[6] Rynkovskaia M.I. Primenenie i raschet gelikoidal’nykh obolochek v arkhitekture i stroitel’stve [On application and analysis of helicoidal shells in architecture and civil engineering]. Vestnik Rossiiskogo universiteta druzhby narodov. Seriia: Inzhenernye issledovaniia [RUDN journal of engineering researches]. 2012, no. 4, pp. 84–90.
[7] Tupikova E.M. Raschet tonkikh uprugikh obolochek v forme dlinnogo kosogo gelikoida [Analysis of the thin elastic shells in the form of long oblique helicoid]. Stroitel’naia mekhanika inzhenernykh konstruktsii i sooruzhenii [Structural Mechanics of Engineering Constructions and Buildings]. 2015, no. 3, pp. 23–27.
[8] Tupikova E.M. Vychislenie peremeshchenii i usilii v zhelezobetonnykh pandusakh v forme kosogo gelikoida [Calculation of displacements and forces in reinforced concrete ramps in the form of skew helicoid]. Stroitel’naia mekhanika i raschet sooruzhenii [Structural Mechanics and Analysis of Constructions]. 2015, no. 4, pp. 24–28.
[9] Tupikova E.M. Poluanaliticheskii raschet obolochki v forme dlinnogo pologogo kosogo gelikoida v neortogonal’noi nesopriazhennoi sisteme koordinat po momentnoi teorii [Emi-analytical analysis of a long shallow oblique helicoidal shell in a non-orthogonal non-conjugate coordinate system]. Stroitel’naia mekhanika inzhenernykh konstruktsii i sooruzhenii [Structural Mechanics of Engineering Constructions and Buildings]. 2016, no. 3, pp. 3–8.
[10] Tupikova E.M. Analiz metoda V.G. Rekacha dlia rascheta napriazhenno-deformirovannogo sostoianiia obolochki v forme dlinnogo pologogo kosogo gelikoida [Rekatch’s method of stress–strain analysis of the shell of long shallow oblique helicoid form]. Stroitel’naia mekhanika i raschet sooruzhenii [Structural Mechanics and Analysis of Constructions]. 2016, no. 1, pp. 14–20
[11] Savićević S., Janjić М., Vukčević M., Šibalić N. Stress research of helicoidal shell shape elements. Machines, technologies, materials, 2013, is. 10. Available at: http://www.mech-ing.com/journal/Archive/2013/10/42_Savicevic_mtm13.pdf (accessed 20 May 2017).
[12] Savićević S. A Development of Automatized Projection of Construction Elements of Helical Shell Shape. PhD dissertation, Podgorica, Faculty of Mechanical Engineering, 2001.
[13] Krivoshapko S.N., Gbaguidi A.G. Two methods of analysis of thin elastic open helicoidal shells. International Journal of Research and Reviews in Applied Sciences, 2012, vol. 12, no. 3, pp. 382–390.
[14] Knabel J., Lewinski T. Selected equilibrium problem of thin elastic helicoidal shells. Archives of Civil Engineering, 1999, vol. 45(2), pp. 245–257.
[15] Krivoshapko S.N., Christian A. Bock Hyeng. Static and dynamic analysis of thin-walled cyclic shells. International Journal of Modern Engineering Research, 2012, vol. 2, is. 5, pp. 3502–3508.
[16] Shevelev L.P., Korikhin N.V., Golovin A.I. Sostoianiia polia napriazhenii v gelikoidal’noi obolochke [Field stresses state in the helicoidal shell]. Stroitel’stvo unikal’nykh zdanii i sooruzhenii [Construction of Unique Buildings and Structures]. 2014, no. 2(17), pp. 25–38.
[17] Biderman V.L. Mekhanika tonkostennykh konstruktsii: statika [Mechanics of thin-walled structures: statics]. Moscow, URSS publ., 2017. 496 p.
[18] D’iakonov V.P. Mathematica 5.1/5.2/6. Programmirovanie i matematicheskie vychisleniia [Mathematica 5.1/5.2/6. Programming and mathematical calculations]. Moscow, DMK-Press publ., 2008. 574 p.