Mathematical Modeling of Heat Transfer During Chemical Vapor Deposition
Authors: Zhuravskiy A.V. | Published: 23.11.2017 |
Published in issue: #11(692)/2017 | |
Category: Calculation and Design of Machinery | |
Keywords: chemical vapor deposition, curvilinear plate, non-stationary heat conductivity, numerical modeling |
A heat conductivity model is proposed that takes into account physical features of heat exchange of a plate with vapors of the deposited material. The most general case of a curvilinear plate is considered. Heat transfer by convection and radiation, as well as heat and mass transfer are examined. The possibility of modifying the mathematical model in order to take into account diffusion mass transfer and linear changes of the curvature with regards to the plate thickness is shown. A numerical algorithm for solving the problem is proposed. Calculations for various materials of the plate-coating pairs are performed. Conclusions are drawn about the dependence of the temperature field in the plate on the plate geometry, parameters of deposition and material properties.
References
[1] Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnology]. Moscow, Fizmatlit publ., 2005. 416 p.
[2] Andrievskii R.A., Ragulia A.V. Nanostrukturnye materialy [Nanostructured materials]. Moscow, Akademiia publ., 2005. 192 p.
[3] Vasilev V.Yu., Repinsky S.M. Chemical vapour deposition of thin-film dielectrics. Russian Chemical Reviews, 2005, vol. 74, no. 5, pp. 413–441.
[4] Tikhonravov A.V., Kochikov I.V., Amochkina T.V., Grigor’ev F.V., Kondakova O.A., Suli-mov V.B. Superkomp’iuternoe modelirovanie sovremennykh protsessov napyleniia opticheskikh nanopokrytii [High performance modeling of modern deposition processes for optical coating nanotechnology]. Vychislitel’nye metody i programmirovanie [Numerical methods and programming]. 2012, vol. 13, no. 4, pp. 491–496.
[5] Komarov F.F., Pil’ko V.V., Klimovich I.M. Vliianie uslovii naneseniia nanostrukturirovannykh pokrytii iz Ti–Zr–Si–N na ikh sostav, strukturu i tribomekhanicheskie svoistva [The influence of the conditions of application of nanostructured coatings of the Ti–Zr–Si–N, their composition, structure and tribomechanical properties]. Inzhenerno-fizicheskii zhurnal [Journal of Engineering Physics and Thermophysics]. 2015, vol. 88, no. 2, pp. 350–354.
[6] Kostanovskii A.V., Gusev M.K. Osazhdenie tonkikh plenok pri vakuum-termicheskom ispa-renii nitrida aliuminiia [Deposition of thin films during vacuum-thermal evaporation of aluminium nitride]. Teplofizika vysokikh temperature [High Temperature]. 1995, vol. 33, no. 1, pp. 163–166.
[7] Lukomskii Iu.Ia., Priiatkin G.M., Mulina T.V., Opolovnikov V.R., Kiseleva V.L., Kol’chu-gin A.V., Noskova O.L. Elektroliticheskoe osazhdenie metallov na aliuminii i ego splavy [Electrolytic deposition of metals on aluminium and its alloys]. Uspekhi khimii [Russian Chemical Reviews]. 1991, vol. 60, no. 5, pp. 1077–1103.
[8] Marchenko I.G., Marchenko I.I. Nediffuzionnye mekhanizmy atomnogo uporiadocheniia pri nizkotemperaturnom osazhdenii medi [Nondiffusion mechanisms of atomic ordering in low-temperature deposition of copper]. Zhurnal eksperimental’noi i teoreticheskoi fiziki [Journal of experimental and theoretical physics]. 2009, vol. 89, no. 7, pp. 396–401.
[9] Kuvyrkin G.N. Termomekhanika deformiruemogo tverdogo tela pri vysokointensivnom nagruzhenii [Thermomechanics of a deformable solid body during high-intensity loading]. Moscow, Bauman Press, 1993. 145 p.
[10] Kuvyrkin G.N., Zhuravskii A.V., Savel’eva I.Y. Mathematical Modeling of Chemical Vapor Deposition of Material on a Curvilinear Surface. Journal of Engineering Physics and Thermophysics, 2016, vol. 89, no. 6, pp. 1374–1379.
[11] Dul’nev G.N. Teoriia teplo- i massoobmena [Theory of heat and mass transfer]. Sankt-Petersburg, NIU ITMO publ., 2012. 195 p.
[12] Kalitkin N.N. Chislennye metody [Numerical methods]. Moscow, Nauka publ., 1978. 512 p.
[13] Riaben’kii V.S. Vvedenie v vychislitel’nuiu matematiku [Introduction to computational mathematics]. Moscow, Nauka publ., 1994. 336 p.
[14] Galanin M.P., Savenkov E.B. Metody chislennogo analiza matematicheskikh modelei [Numerical analysis of mathematical models]. Moscow, Bauman Press, 2010. 591 p.
[15] Samarskii A.A. Teoriia raznostnykh skhem [The theory of difference schemes]. Moscow, Nauka publ., 1977. 656 p.
[16] Spravochnik po tsvetnym metallam [Handbook of non-ferrous metals]. Available at: http://libmetal.ru/ (accessed 15 June 2017).
[17] Frank-Kamenetskii D.A. Diffuziia i teploperedacha v khimicheskoi kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow, Nauka publ., 1987. 502 p.
[18] Dul’nev G.N. Teoriia teplo- i massoobmena [Theory of heat and mass transfer]. Sankt-Petersburg, NIU ITMO publ., 2012. 195 p.