The Research of Geometry and Qualitative Indicators of a Gear Pump with Internal Involute Gearing
Authors: Tarabarin V.B., Tarabarina Z.I. | Published: 21.02.2018 |
Published in issue: #2(695)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Theory of Mechanisms and Machines | |
Keywords: gear pumps, internal involute gearing, calculation of geometry of engagement, boundary conditions, qualitative indicators, blocking contours |
The paper deals with the calculation of geometry of gear pumps with internal involute gearing and presents the calculation procedure. It also describes boundary conditions of the existence of gearing and specific qualitative indicators for working pairs of gear pumps: the ratio of geometric flow, the coefficient of uneven flow and the change ratio of the trapped volume. The blocking contours are calculated for two examples based on the limitations of the cutter tool and working gearing. The authors investigate the influence of the coefficients of displacement x1 and x2 and the parameters of the cutter tool gearing (number of teeth of the shaping cutter, radial and side clearances) on the shape, size and location of the contour of the coordinate plane. The contour lines of the qualitative indicators are plotted over the constructed contours. These lines allow the designer to select the optimal combination of the coefficients of displacement x1 and x2 that provide the best characteristics for the pumps.
References
[1] Parambath Joji. Industrial Hydraulic Systems: Theory and Practice. Florida, USA, Universal-Publisher Boca Raton, 2016. 590 p.
[2] Iudin E.M. Shesterennye nasosy. Osnovnye parametry i ikh raschet [Gear pumps. The main parameters and their calculation]. Moscow, Kniga po trebovaniiu publ., 2013. 237 p.
[3] Lur’e Z.Ia., Gasiuk A.I. Poetapnaia mnogokriterial’naia optimizatsiia kachaiushchikh uzlov shesterennykh nasosov vnutrennego zatsepleniia po zadannomu rabochemu ob"emu [A staged multi-objective optimization of pumping units and gear pumps with internal engagement by a given working volume]. Vestnik NTU «KhPI». Ser. Energeticheskie i teplotekhnicheskie protsessy i oborudovanie [Herald of NTU «KHPI». Ser. Energy and thermal engineering processes and equipment]. 2014, no. 1(1044), pp. 69–76.
[4] Timofeev B.P., Daineko V.Iu. Shesterennye nasosy v mashinostroenii [Gear-type pumps in the engineering industry]. Vestnik mashinostroeniia [Russian Engineering Research]. 2010, no. 8, pp. 26–29.
[5] Lur’e Z.Ia., Gasiuk A.I. Puti uluchsheniia kharakteristik nasosov vnutrennego zatsepleniia [Ways of improvement of characteristics of internal gear pumps]. Vostochno-Evropeiskii zhurnal peredovykh tekhnologii [Eastern-European journal of enterprise technologies]. 2013, no. 1/7(61), pp. 45–48.
[6] Bashta T.M. Ob"emnye nasosy i gidravlicheskie dvigateli gidrosistem [Displacement pumps and hydraulic motors hydraulic systems]. Moscow, Kniga po trebovaniiu publ., 2012. 237 p.
[7] Jianshon Z. Drive characterizations of internal gear pump and a new method of analytical calculation of flow rate. Machine Tool & Hydraulics, 1990, no. 3, pp. 25–28.
[8] Karassik I., Heald Ch., Cooper P., Messina J. Pump handbook. The McGraw-Hill Companies, Inc., 2008. 1853 p.
[9] Skvortsova N.A., Ermakova I.N., Kostikov Iu.V., Tarabarin V.B. Issledovanie geometrii zatsepleniia nasosov i motorov traktorov i s/kh mashin [Study of geometry of gear pumps and motors of the tractors and agricultural machines]. Moscow, Bauman Press, 1979. 123 p.
[10] Tarabarin V.B., Tarabarina Z.I. Issledovanie geometrii rabochikh par gidro-mashin s vnutrennim evol’ventnym zatsepleniem [The study of geometry pairs of working hydraulic machines with internal involute gearing]. Trudy MVTU im. N.E. Baumana [Trudy MVTU named after N.E. Bauman]. 1981, is. 9, pp. 54–63.
[11] Gavrilenko V.A. Osnovy teorii evol’ventnoi zubchatoi peredachi [Fundamentals of the theory of involute gear transmissions]. Moscow, Mashinostroenie publ., 1969. 431 p.
[12] Skvortsova N.A., Lukichev D.M. Geometricheskii raschet evol’ventnykh zubchatykh peredach vnutrennego zatsepleniia [Geometric calculation of involute gear internal gear]. Moscow, GOSINTI publ., 1962. 28 p.
[13] Sidorov P.G., Kriukov V.A., Pliasov A.V. Novaia sistema rascheta geometrii vnutrennego evol’ventnogo zatsepleniia [New system for calculating the internal geometry of involute gearing]. Izvestiia TulGU. Ser. Mashinovedenie, sistemy privodov i detali mashin [Proceedings of the TSU. Technical sciences]. 2006, is. 3, pp. 23–35.
[14] Pliasov A.V. Geometricheskii sintez vnutrennikh evol’ventnykh zatseplenii planetarnykh peredach s bol’shim peredatochnym otnosheniem. Diss. kand. tekhn. nauk [Geometrical synthesis of the internal involute gearing planetary gear with a large gear ratio. Cand. tech. sci. diss.]. Tula, TulSU publ., 2006. 200 p.
[15] Sidorov P.G., Kryukov V.A., Plyasov A.V., Pashin A.A., Shiryaev I.A. Synthesis of internal involute couplings of planetary transmissions. Russian Engineering Research, 2009, vol. 29, no. 6, pp. 531–537.
[16] Borisov B.P. Posobie po proektirovaniiu rotornykh gidromashin. Chast’ I. Shesterennye gidromashiny [A manual for design of rotary hydraulic machines. Pt I. Gear-type hydraulic machine]. Moscow, Bauman Press, 1977. 32 p.