Mathematical Model and Computational Research of Combustion Chamber Wall Thermal State for Gaseous-Propellant Oxygen-Methane Low-Thrust Rocket Engine on a Pulse Mode
Authors: Vorozheeva O.A., Yagodnikov D.A. | Published: 19.09.2013 |
Published in issue: #7(640)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: low-thrust rocket engine, gaseous oxygen and methane, combust ion chamber, mathematical modeling, pulse mode, thermal state |
The mathematical modeling of the combustion chamber wall thermal state of gaseous-propellant oxygen-methane low-thrust rocket engine on a pulse mode is described in this paper. The objective of this modeling is to reduce the extent of f iring tests which are essent ial for engine development. The 2D axisymmetric transient heat conduction mathematical model which considers heat axial flow-over and unsteady processes inside a combustion chamber is proposed. A temperature fields spread in the combustion chamber wal l of low-thrus t rocket engine throughout its firing time is obtained. During the test calculations the heat distribution in the vital zones (near injector head and nozzle throat) of the combustion chamber wall is computed. Various operating conditions influence on the thermal state of the combustion chamber wall of a model low-thrust rocket engine (produced from copper and steel) is explored. An engine tendency to heat storage on pulse mode is confirmed.
References
[1] Novikov A.V., Iagodnikov D.A., Antonov Iu.V. Rol’ osevykh peretechek tepla vdol’ stenki kamery sgoraniia pri raschete okhlazhdeniia RDMT na komponentakh topliva: gazoobraznyi kislorod-kerosin [Role heat leakages along the axial wall of the combustion chamber when calculating the cooling RDMT on components Fuel gas oxygen kerosene]. Raketno-kosmicheskie dvigatel ’nye us tanovki . Tezi sy dokladov Vserossiiskoi nauchno-tekhnicheskoi konferetsii [Rocket and Space Propulsion. Abstracts of the Russian scientific and technical conference]. Moscow, 2008, pp. 24—25.
[2] Razrabotka matematicheskoi modeli i metodiki rascheta rabochikh protsessov v kamere sgoraniia RDMT na komponentakh topliva kislorod-szhizhennyi prirodnyi gaz, rabotaiushchego v impul’snom rezhime [Development of mathematical models and calculation methods of work processes in the combustion chamber RDMT on the components of oxygen-fuel liquefied natural gas , operat ing in a pul sed mode] . Otchet o Nauchno-issledovatel’skoi rabote [Report on the research work]. Head Iagodnikov D.A. MSTU named after N.E. Bauman publ., no.E1/006—12. Moscow, 2012. 74 p.
[3] Lebedinskii E.V., Kalmykov G.P., Mosolov S.V. Rabochie protsessy v zhidkostnom raketnom dvigatele i ikh modelirovanie [Working processes in liquid-propellant rocket engine and their simulation]. Ed. Koroteev A.S. Moscow, Mashinostroenie publ., 2008. 512 p.
[4] Vasil’ev A.P., Kudr iavt sev V.M., Kuznetsov V.A., Kurpatenkov V.D., Obel’nitskii F.M., Poliaev V.M., Poluian B. Ia. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelei [Fundamentals of the theory and design of liquid rocket engines]. Moscow, Vysshaia shkola publ., 1993. 368 p.
[5] Dobrovol’skii M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniia [Liquid rocket engines. Principles of design]. Moscow, MSTU named after N.E. Bauman publ., 2005. 488 p.
[6] Kuz’min M.P., Lagun I.M. Nestatsionarnyi teplovoi rezhim elementov konstruktsii dvigatelei letatel’nykh apparatov [Unsteady thermal regime of structural elements of aircraft engines]. Moscow, Mashinostroenie publ., 1988. 240 p.
[7] Stankus S.V., Savchenko I.V., Baginskii A.V., Verba O.I., Prokop’ev A.M., Khairulin R.A. Koeffitsienty teploprovodnosti nerzhaveiushchei stal i 12Kh18N10T v shirokom intervaletemperatur [Coefficients of thermal conductivity stainless steel 12X18H10T a wide temperature range]. Teplofizika vysokikh temperature [High Temperature]. 2008, vol. 45, no. 5, pp. 795—797.
[8] Osintsev O.E., Fedorov V.N. Med’ i mednye splavy. Otechestvennye i zarubezhnye marki [Copper and copper alloys. Domes t ic and foreign brands ] . Di rectory. Moscow, Mashinostroenie publ., 2004. 336 p.
[9] Burkal’tsev V.A., Lapitskii V.I., Novikov A.V. Chislennoe modelirovanie i eksperimental’noe issledovanie rabochego protsessa v kamere RDMT na gazoobraznykh komponentakh topliva kislorod + metan [Numerical simulation and experimental study of the working process in the chamber RDMT for gaseous oxygen propellants + methane]. Moscow, MSTU named after N.E. Bauman publ., 2009. 60 p.
[10] Novikov A.V., Iagodnikov D.A., Burkal’tsev V.A., Lapitskii V.I. Matematicheskaia model’ i raschet kharakteristik rabochego protsessa v kamere sgoraniia ZhRD maloi tiagi na komponentakh topliva metan-kisloroda [Mathematical model and calculates the performance of the workflow in the combustion chamber rocket engine thrusters on the components of the methane-oxygen fuel]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Mechanical Engineering. Mechanical Engineering]. 2004, no. 3, special issue, pp. 8—17.