Prediction of durability and reliability of high-pressure structural elements. Part 2. Computational statistical modeling
Authors: Dimitrienko Yu.I., Yurin Yu.V., Shiverskiy E.A. | Published: 06.12.2013 |
Published in issue: #12(645)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: durability and reliability predicting, damage accumulation, fatigue, creep, computational modeling, Mont-Carlo method, finite element method, high-pressure structures, nuclear power plants, chemical durability criterion |
The evaluation of reliability and durability of high-pressure explosive structures is an important technical problem. In Part 1, a method for predicting durability of structures was proposed. The method implies the numerical simulation of a three-dimensional stress-strain state (SSS) of structures taking into account the chemical durability criterion. This paper deals with a method of calculation of durability and reliability of complex high-pressure structural elements under random steady-state loads imposed on the structure during its operation taking into account statistical straggling of elastic strength properties of structural materials. The method is a combination of the numerical statistical simulation (the Monte Carlo method) of the SSS of a structure with random characteristics of structural materials and a damage accumulation model under steady-state random loading. The damage accumulation is calculated using the chemical durability criterion. This criterion allows carrying out calculations of damage accumulation and durability under cyclic and static loads. To simulate the three-dimensional behavior of structures subject to creep, an iteration technique based on the finite element method is developed. Analytical expressions for the variances of the damage parameter and durability distribution density are obtained to reduce the amount of calculations required for evaluating the reliability. As an example of the application of this method, the durability and reliability of a high-pressure three-layer structure with welded pipes is calculated. Such structures can be used in prospective nuclear power plants.
References
[1] Beck A.T., Edison da Rosa. Structural reliability analysis using deterministic finite element Programs. Latin American Journal of Solids and Structures, 2006, no. 3, pp. 197—222.
[2] Ramu S.A., Ganesan R. Stability analysis of a stochastic column subjected to stochastically distributed loadings using the finite element method. Finite Elements in Analysis and Design, 1992, no. 11, pp. 105—115.
[3] Adhikari S., Manohar C.S. Dynamic analysis of framed structures with statistical uncertainties. International Journal of Numerical Methods in Engineering, 1999, vol. 44, pp. 1157—1178.
[4] Wang D., Chowdhury M.R., Haldar A. System reliability evaluation considering strength and serviceability requirements. Computers and Structures, 1997, vol. 62, no. 5, pp. 883—896.
[5] Takada T. Weighted integral method in multi-dimensional stochastic finite element analysis. Probabilistic Engineering Mechanics, 1990, vol. 5, no. 4, pp.158—166.
[6] Spanos P.D., Ghanem R. Stochastic finite element expansion for random media. Journal of Engineering Mechanics, 1989, vol. 115, no. 5, pp. 1035—1053.
[7] Mahadevan S., Dey A. Adaptive Monte Carlo simulation for time-variant reliability analysis of brittle structures. AIAA Journal, 1997, vol. 35, no. 2, pp. 321—326.
[8] Liu W.K., Besterfield G.H., Belytschko T. Variational approach to probabilistic finite elements. Journal of Engineering Mechanics ASCE, 1988, vol. 114, no. 12, pp. 2115—2133.
[9] Der Kiureghian A., Ke J.B. The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 1988, vol. 3, no. 2, pp. 83—91.
[10] Chang T.P. Dynamic finite element analysis of a beam on random foundation. Computers and Structures, 1993, vol. 48, no. 4, pp. 583—589.
[11] Bolotin V.V. Primenenie metodov teorii veroiatnostei i teorii nadezhnosti v raschetakh sooruzhenii [Application of the theory of probability and reliability theory in the calculation of structures]. Moscow, Stroiizdat publ., 1971. 256 p.
[12] Il’iushin A.A., Pobedria B.E. Osnovy matematicheskoi teorii termoviazkouprugos t i [Fundamental s of mathemat ical theory thermoviscoelasticity]. Moscow, Nauka publ., 1970. 280 p.
[13] Dimitrienko Iu.I., Dimitrienko I.P. Dlitel’naia prochnost’ armirovannykh plastikov [Long-term strength of reinforced plastics]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1989, no. 1, pp. 16—22.
[14] Dimitrienko Iu.I., Iurin Iu.V., Evropin S.V. Prognozirovanie dolgovechnosti i nadezhnosti elementov konstruktsii vysokogo davleniia. Chast’1. Chislennoe modelirovanie nakopleniia povrezhdenii. [Prediction of durability and reliability of structural elements under high pressure. Part 1. Numerical simulation of damage accumulation]. Izvestiya Vysshikh Uchebnykh Zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2013, no. 11, pp. 3–11.
[15] Dimitrienko Iu.I. Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh [Mechanics of composite materials at high temperatures]. Moscow, Mashinostroenie publ., 1997. 366 p.
[16] Dimitrienko Iu.I. Asimptoticheskaia teoriia mnogosloinykh tonkikh plastin [Asymptotic Theory of Multilayer Thin Plates]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences]. 2012, no. 3, pp. 86—100.
[17] Dimitrienko Iu.I. Nelineinaia mekhanika sploshnoi sredy [Nonlinear continuum mechanics]. Moscow, Fizmatlit publ., 2009. 610 p.
[18] Dimitrienko Iu.I. Tenzornyi analiz. V 4 t. T. 1: Mekhanika sploshnoi sredy [Tensor analysis. In 4 vol. Vol. 1: Continuum Mechanics]. Moscow, Bauman Press, 2011. 463 p.
[19] Dimi t r ienko Iu. I. , Dimi t r ienko I.P. Prognozi rovanie dolgovechnosti polimernykh elementov konstruktsii s pomoshch’iu «khimicheskogo» kriteriia dlitel’noi prochnosti [Predicting durability of polymeric structural elements with the help of «chemical» criterion of long-term strength]. Voprosy oboronnoi tekhniki [Questions of defense equipment]. 2002, no. 1/2, pp. 15—21.
[20] Dimitrienko Iu.I., Dimitrienko I.P. Raschet soprotivleniia ustalosti kompozitov na osnove «khimicheskogo» kriteriia dlitel’noi prochnosti [Calculation of the fatigue resistance of the composites based on «chemical» long-term strength criterion]. Voprosy oboronnoi tekhniki [Questions of defense equipment]. 2002, no. 1/2, pp. 21—25.
[21] Dimitrienko Iu.I., Dubrovina A.Iu., Sokolov A.P. Konechnoelementnoe model i rovanie us talos tnykh kharakteristik kompozitsionnykh materialov [Finite element modeling of fatigue properties of composite materials]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki. Spetsial’nyi vypusk Matematicheskoe modelirovanie [Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences. Special issue of Mathematical Modeling]. 2011, pp. 34—49.
[22] Venttsel’ E.S. Teoriia veroiatnostei [Probability]. Moscow, Fizmatlit publ., 1969. 564 p.