Using geometric primitives to determine densitometric data in analyzing the bone tissue structure at transpedicular fixation
Authors: Kulikov Y.N., Vorotnikov A.A., Mishchenkov D.S., Poduraev Yu.V., Grin A.A., Levchenko O.V. | Published: 06.07.2025 |
Published in issue: #7(784)/2025 | |
Category: Mechanics | Chapter: Biomechanics and Bioengineering | |
Keywords: computer tomography, densitometric data processing, transpedicular fixation, geometric primitives |
The problem of modern navigation methods using segmentation lies in transformation of data on the bone tissue structure into a single object representing a solid three-dimensional model. This problem could significantly influence the quality of the implant position. Analysis of raster images and studying the Hounsfield units at the implant positioning would make it possible to selecting trajectories for their input. The paper proposes a method for determining the patient densitometric data in computer tomography to analyze the bone tissue in transpedicular fixation. The proposed method is based on obtaining the Hounsfield units of the patient’s vertebral tissue using geometric primitives such as the lines. This method includes a set of actions for working with voxels in the computer tomography DICOM images. The method is illustrated with an example using the patient data. The example includes a set of graphs describing the vertebral pedicle structure along the selected cylinder.
EDN: RYTKHK, https://elibrary/rytkhk
References
[1] Lefranc M., Peltier J. Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa® Spine robot with intraoperative flat-panel CT guidance—a cadaver study. J. Robot. Surg., 2015, vol. 9, no. 4, pp. 331–338, doi: https://doi.org/10.1007/s11701-015-0536-x
[2] Yanushevich O.O., ed. Meditsinskaya robototekhnika [Medical robotics]. Moscow, Geotar-Media Publ., 2023. 384 p. (In Russ.).
[3] Levin A.A., Klimov D.D., Vorotnikov A.A. et al. The comparison of the process of manual and robotic positioning of the electrode performing radiofrequency ablation under the control of a surgical navigation system. Sci. Rep., 2020, vol. 10, art. 8612, doi: https://doi.org/10.1038/s41598-020-64472-9
[4] Chen J., Li Y., Zheng H. et al. Hounsfield unit for assessing bone mineral density distribution within lumbar vertebrae and its clinical values. Front. Endocrinol., 2024, vol. 15, art. 1398367, doi: https://doi.org/10.3389/fendo.2024.1398367
[5] Leonova O.N., Baykov E.S., Krutko A.V. Bone mineral density of lumbar vertebrae in patients with degenerative spinal diseases. Geniy ortopedii, 2022, vol. 28, no. 5, pp. 692–697, doi: https://doi.org/10.18019/1028-4427-2022-28-5-692-697 (in Russ.).
[6] Aiello M., Esposito G., Pagliari G. et al. How does DICOM support big data management? Investigating its use in medical imaging community. Insights Imaging, 2021, vol. 12, art. 164, doi: https://doi.org/10.1186/s13244-021-01081-8
[7] Jodogne S., Bernard C., Devillers M. et al. Orthanc — a lightweight, restful dicom server for healthcare and medical research. IEEE 10th Int. Symp. Biomedical Imaging, 2013, pp. 190–193, doi: https://doi.org/10.1109/ISBI.2013.6556444
[8] Kosulin A.V., Elyakin D.V., Lebedeva K.D. et al. Navigation template for vertebral pedicle passage in transpedicular screw fixation. Pediatr [Pediatrician (St. Petersburg)], 2019, vol. 10, no. 3, pp. 45–50, doi: https://doi.org/10.17816/PED10345-50 (in Russ.).
[9] Molliqaj G., Schatlo B., Alaid A. et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg. Focus, 2017, vol. 42, no. 5, art. E14, doi: https://doi.org/10.3171/2017.3.FOCUS179
[10] Adamski S., Stogowski P., Rocławski V. et al. Review of currently used classifications for pedicle screw position grading in cervical, thoracic and lumbar spine. Chirurgia Narządów Ruchu i Ortopedia Polska, 2023, vol. 88, no. 4, pp. 165–171.
[11] Gubin A.V., Ryabykh S.O., Burtsev A.V. Retrospective analysis of screw malposition following instrumented correction of thoracic and lumbar spine deformities. Khirurgiya pozvonochnika [Russian Journal of Spine Surgery], 2015, vol. 12, no. 1, pp. 8–13, doi: https://doi.org/10.14531/ss2015.1.8-13 (in Russ.).
[12] Kulikov Yu.N., Vorotnikov A.A., Mishchenkov D.S. et al. Information system for collecting, storing and processing densitometry data to determine perspective navigation data for medical robots. Meditsinskaya tekhnika, 2024, no. 1, pp. 10–13, EDN: DZGLWS (in Russ.).
[13] Kulikov Y.N., Vorotnikov A.A., Mishchenkov D.S. et al. An information management system for collecting, storing, and processing densitometric data to identify promising navigation data for medical robots. Biomed. Eng., 2024, vol. 58, no. 1, pp. 14–18, doi: http://dx.doi.org/10.1007/s10527-024-10357-4
[14] Kulikov Yu.N., Mishchenkov D.S., Vorotnikov A.A. et al. Prototip programmnogo kompleksa po analizu intraoperatsionnykh dannykh transpedikulyarnoy fiksatsii dlya ucheta individualnykh osobennostey patsienta [Prototype of a software system for analysing intraoperative data of transpedicular fixation to account for individual patient characteristics]. Software reg. cert. 2024661832 of 22.05.2024 (in Russ.).
[15] Simonov E.N., Avramov D.V., Avramov M.V. Method of volume rendering for visualization three-dimensional data in x-ray computed tomography. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Ser. Kompyuternye tekhnologii, upravlenie, radioelektronika [Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics], 2016, vol. 16, no. 4, pp. 5–12, doi: http://dx.doi.org/10.14529/ctcr160401 (in Russ.).
[16] Mueller D. LookAt transform initializer and oblique section image filter. The Insight Journal, 2007, doi: https://doi.org/10.54294/vjl9ud
[17] Vorotnikov A.A., Poduraev Y.V., Romash E.V. Estimation of error in determining the centers of rotation of links in a kinematic chain for industrial robot calibration techniques. Meas. Tech., 2015, vol. 58, no. 8, pp. 864–871, doi: https://doi.org/10.1007/s11018-015-0809-9
[18] Pieper S., Halle M., Kikinis R. 3D slicer. 2nd IEEE Int. Symp. Biomedical Imaging: Nano to Macro, 2004, pp. 632–635, doi: https://doi.org/10.1109/ISBI.2004.1398617
[19] Hunter J.D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 90–95, doi: https://doi.org/10.1109/MCSE.2007.55
[20] Vorotnikov A., Romash E., Isaev A. et al. Uncertainty estimation of axes direction determination of industrial robot using an ellipsoid concentration model. Proc. of the 27th DAAAM Int. Symp. Intelligent Manufacturing And Automation, 2016, pp. 480–486, doi: http://dx.doi.org/10.2507/27th.daaam.proceedings.072