Shear stiffness determination of the three-layer rod based on the deflections or natural frequencies known values
Authors: Belkin A.E., Biryukov I.D. | Published: 03.02.2025 |
Published in issue: #2(779)/2025 | |
Category: Mechanics | Chapter: Solid Mechanics | |
Keywords: three-layer rod, transverse bending, filler stiffness, natural frequencies, rigidity identification |
In mathematical simulation of the three-layer structures, real fillers of complex structure (honeycomb, corrugated, folded, etc.) are replaced by a conventional homogeneous layer with the given elastic characteristics. Shear stiffness is one of the most important characteristics of a filler. It is rather difficult to obtain its value directly by testing the filler. The problem is set to identify shear stiffness of the three-layer rod filler based on the known values ??of natural frequencies or displacement under the transverse bending. In computation of the three-layer rods, the paper uses the E.I. Grigolyuk - P.P. Chulkov theory constructed on the basis of the broken normal hypothesis. It considers results of applying this approximate theory to computation of the rod natural frequencies and vibration modes. To assess the approximate theory accuracy, the paper compares computation results with solutions to the plane dynamic problem of the elasticity theory by the finite element method. It shows that for the lowest vibration modes with wavelengths significantly exceeding the cross-section height, the broken normal hypothesis provides results practically matching solutions of the elasticity theory. The paper analyzes the filler stiffness effect on the values ??of the natural vibration frequencies and displacement under the three-point bending of a rod. Formulas are obtained making it possible to establish the filler shear stiffness values based on the known data of the corresponding tests.
EDN: ZJKAZI, https://elibrary/zjkazi
References
[1] Saito T., Parbery R.D., Okuno S. et al. Parameter identification for aluminum honeycomb sandwich panels based on orthotropic Timoshenko beam theory. J. Sound Vib., 1997, vol. 208, no. 2, pp. 271–287, doi: https://doi.org/10.1006/jsvi.1997.1189
[2] Shi Y., Sol H., Hua H. Material parameter identification of sandwich beams by an inverse method. J. Sound Vib., 2006, vol. 290, no. 3–5, pp. 1234–1255, doi: https://doi.org/10.1016/j.jsv.2005.05.026
[3] Aoki Y., Maysenhölder W. Experimental and numerical assessment of the equivalent-orthotropic-thin-plate model for bending of corrugated panels. Int. J. Solids Struct., 2017, vol. 108, pp. 11–23, doi: https://doi.org/10.1016/j.ijsolstr.2016.07.042
[4] Nikhamkin M.Sh., Solomonov D.G. Application of experimental modal analysis to identify the parameters of the model of laminated carbon fiber reinforced plastic. Vestnik PNIPU. Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering Bulletin], 2017, no. 51, pp. 124–135, doi: https://doi.org/10.15593/2224-9982/2017.51.12 (in Russ.).
[5] Nikhamkin M.Sh., Solomonov D.G., Zilbershmidt V.V. Identification of elastic parameters of composite using experimental data on modal characteristics of samples. Vestnik PNIPU. Mekhanika [PNRPU Mechanics Bulletin], 2019, no. 1, pp. 110–122, doi: https://doi.org/10.15593/perm.mech/2019.1.09 (in Russ.).
[6] Kayumov R.A., Lukankin S.A., Paymushin V.N. et al. Identification of mechanical properties of fiber-reinforced composites. Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki, 2015, vol. 157, no. 4, pp. 112–132. (In Russ.).
[7] Prokudin O.A., Solyaev Yu.O., Babaytsev A.V. et al Dynamic characteristics of three-layer beams with load-bearing layers made of alumino-glass plastic. Vestnik PNIPU. Mekhanika [PNRPU Mechanics Bulletin], 2020, no. 4, pp. 260–270, doi: https://doi.org/10.15593/perm.mech/2020.4.22 (in Russ.).
[8] Grigolyuk E.I., Chulkov P.P. Ustoychivost i kolebaniya trekhsloynykh obolochek [Stability and oscillations of three-layer shells]. Moscow, Mashinostroenie Publ., 1973. 170 p. (In Russ.).
[9] Vasilyev V.V. Mekhanika mnogosloynykh konstruktsiy iz kompozitsionnykh materialov [Mechanics of multilayer constructions from composite materials]. Moscow, Mashinostroenie Publ., 1988. 271 p. (In Russ.).
[10] Alfutov N.A., Zinovyev P.A., Popov B.G. Raschet mnogosloynykh plastin i obolochek iz kompozitsionnykh materialov [Calculation of multilayer plates and shells from composite materials]. Moscow, Mashinostroenie Publ., 1984. 263 p. (In Russ.).
[11] Bolotin V.V., Novichkov Yu.N. Mekhanika mnogosloynykh konstruktsiy [Mechanics of multilayer constructions]. Moscow, Mashinostroenie Publ., 1980. 375 p. (In Russ.).
[12] Aleksandrov A.Ya., Lamper R.E., Suvernev V.G., eds. Raschety elementov aviatsionnykh konstruktsiy. Trekhsloynye plastiny i obolochki [Calculations of Elements of Aircraft Structures. Three-layer plates and shells]. Moscow, Mashinostroenie Publ., 1985. 203 p. (In Russ.).
[13] Kobelev V.N., Kovarskiy L.M., Timofeev S.I. Raschet trekhsloynykh konstruktsiy [Calculation of three-layer structures]. Moscow, Mashinostroenie Publ., 1984. 304 p. (In Russ.).
[14] Panin V.F. Konstruktsii s sotovym zapolnitelem [Constructions with honeycomb fille]. Moscow, Mashinostroenie Publ., 1982. 153 p. (In Russ.).
[15] Panin V.F., Gladkov Yu.A. Konstruktsii s zapolnitelem [Constructions with honeycomb filler]. Moscow, Mashinostroenie Publ., 1991. 270 p. (In Russ.).