A method for constructing a nonlinear constitutive relation at the low number of the tensile cycles for the unidirectional CFRP with a thermoplastic matrix
Authors: Fomina Е.I., Khudorozhko M.V., Alimov M.A., Dumansky A.M. | Published: 15.06.2025 |
Published in issue: #6(783)/2025 | |
Category: Mechanics | Chapter: Solid Mechanics | |
Keywords: hereditary elasticity, Abel kernel, nonlinear deformation, hysteresis loops |
Elements of most structures are usually operated under the time-varying loads; therefor, the material behavior models under such types of loading are acquiring utmost importance. The paper considers main types of the constitutive relations used to describe nonlinear behavior of the composite materials. It analyzes regularities in the anisotropy of mechanical behavior of the unidirectional carbon fiber reinforced plastic (CFRP) with a thermoplastic matrix under a small number of the loading cycles. Rheological behavior and physical nonlinearity under the intralayer shear are caused by the polymer matrix properties and its adhesion to the fiber. To study this behavior, the paper proposes a method for constructing a hereditary constitutive relation based on results of the tensile testing the unidirectional specimens at different angles to the reinforcement direction. The model applicability is tested on AS4/PEEK CFRP with a thermoplastic matrix; the hereditary relation parameters are obtained using the Levenberg-Marquardt gradient method by minimizing discrepancy between the calculated and experimental values of deformations. Results of comparing the experimental curves and the calculated ones demonstrate the model’s ability to describe main characteristics of the hysteresis loops under several loading cycles, as well as deformation at the constant rate.
EDN: OJIPJY, https://elibrary/ojipjy
References
[1] Zeyrek B.Y., Aydogan B., Dilekcan E. et al. Review of thermoplastic composites in aerospace industry. IJETI, 2022, vol. 3, no. 1, pp. 1–6, doi: https://doi.org/10.51626/ijeti.2022.03.00031
[2] Surrel Y., Vautrin A. Plastic behaviour of fibrous laminae. Compos. Sci. Technol., 1993, vol. 49, no. 1, pp. 45–50, doi: https://doi.org/10.1016/0266-3538(93)90020-H
[3] Krairi A., Doghri I. A thermodynamically–based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage. Int. J. Plast., 2014, vol. 60, pp. 163–181, doi: https://doi.org/10.1016/j.ijplas.2014.04.010
[4] Kawai M., Masuko Y., Kawase Y. et al. Micromechanical analysis of the off-axis rate-dependent inelastic behavior of unidirectional AS4/PEEK at high temperature. Int. J. Mech. Sci., 2001, vol. 43, no. 9, pp. 2069–2090, doi: https://doi.org/10.1016/S0020-7403(01)00029-7
[5] Lemaitre J., Chaboche J.L. Mechanics of solid materials. Cambridge University Press, 1990. 556 p.
[6] Schapery R.A. On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci., 1969, vol. 9, no. 4, pp. 295–310, doi: https://doi.org/10.1002/pen.760090410
[7] Haj-Ali R.M., Muliana A.H. A micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials. Int. J. Solids Struct., 2003, vol. 40, no. 5, pp. 1037–1057, doi: https://doi.org/10.1016/S0020-7683(02)00663-7
[8] Daniel I.M., Werner B.T., Fenner J.S. Strain–rate–dependent failure criteria for composites. Compos. Sci Technol., 2011, vol. 71, no. 3, pp. 357–364, doi: https://doi.org/10.1016/j.compscitech.2010.11.028
[9] Paymushin V.N., Kayumov R.A., Kholmogorov S.A. On a method for solving inelastic deformation problems of a laminated composite. Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 2021, no. 6, pp. 55–66, doi: https://doi.org/10.26907/0021-3446-2021-6-55-66 (in Russ.). (Eng. version: Russ Math., 2021, vol. 65, no. 6, pp. 47–56, doi: https://doi.org/10.3103/S1066369X21060062)
[10] Rabotnov Yu.N. Elementy nasledstvennoy mekhaniki tverdykh tel [Elements of hereditary solid mechanics]. Moscow, Nauka Publ., 1977. 383 p. (In Russ.).
[11] Malmeyster A.K., Tamuzh V.P., Teters G.A. Soprotivlenie polimernykh i kompozitnykh materialov [Resistance of polymers and composites]. Riga, Zinatne Publ., 1980. 571 p. (In Russ.).
[12] Huang N.C., Lee E.H. Nonlinear viscoelasticity for short time ranges. J. Appl. Mech., 1966, vol. 33, no. 2, pp. 313–321, doi: https://doi.org/10.1115/1.3625043
[13] Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids]. Moscow, Nauka Publ., 1979. 744 p. (In Russ.).
[14] Kazemi P., Renka R.J. A Levenberg–Marquardt method based on Sobolev gradients. Nonlinear Analysis: Theory, Methods & Applications, 2012, vol. 75, no. 16, pp. 6170–6179, doi: https://doi.org/10.1016/j.na.2012.06.022
[15] Motta E.P., Reis J.M.L., Mattos H.S. Modelling the cyclic elasto–viscoplastic behavior of polymers. Polym. Testing, 2019, vol. 78, art. 105991, doi: https://doi.org/10.1016/j.polymertesting.2019.105991
[16] Mathews J.H., Fink K.D. Numerical methods using MATLAB. Prentice Hall, 1999. 662 p. (Russ. ed.: Chislennye metody. Ispolzovanie MATLAB. Moscow, Vilyams Publ., 2001. 713 p.)