Computer simulation of the forming process in the structurally regular core systems
Authors: Gaydzhurov P.P. | Published: 15.02.2025 |
Published in issue: #2(779)/2025 | |
Category: Mechanics | Chapter: Theoretical Mechanics, Machine Dynamics | |
Keywords: deformation simulation, rod system, finite element method, modified Lagrange method, genetic nonlinearity |
Transformable rod systems find their wide application in design of the spacecraft panels and in medicine in the form of various benches. Developing an idea of geometric variability in spatial rod systems of the complex shape appears to be of certain theoretical interest. The paper proposes a concept of kinematic forming the regular rod system from a flat position to the dome-shaped. It uses for final implementation the finite element method in combination with the modified Lagrange method. To assess the deformed state level of a regular rod mesh taking into account the genetic nonlinearity, the paper uses values of the rods longitudinal deformation.
EDN: HDMQRU, https://elibrary/hdmqru
References
[1] Perrin D.P., Smith C.E. Rethinking classical internal forces for active contour models. CVPR, 2001, vol. 2, pp. 615–620, doi: https://doi.org/10.1109/CVPR.2001.991020
[2] Kass M., Witkin A., Terzopoulos D. Snakes: active contour models. Int. J. Comput. Vision, 1988, vol. 1, no. 4, pp. 321–331, doi: https://doi.org/10.1007/BF00133570
[3] McInerney T., Terzopoulos D. Deformable models in medical image analysis: a survey. Med. Image Anal., 1996, vol. 1, no. 2, pp. 91–108, doi: https://doi.org/10.1016/S1361-8415(96)80007-7
[4] Miller J.V., Breen D.E., Lorensen W.E. et al. Geometrically deformed models: a method for extracting closed geometric models form volume data. SIGGRAPH’91, 1991, vol. 25, no. 4, pp 217–226, doi: https://doi.org/10.1145/122718.122742
[5] Terzopoulos D., Fleischer K. Deformable models. Vis. Comput., 1998, vol. 4, no. 6, pp. 306–331, doi: https://doi.org/10.1007/BF01908877
[6] Terzopoulost D., Platt J., Barr A. et al. Elastically deformable models. Comput. Graph., 1987, vol. 21, no. 4, pp. 205–214, doi: https://doi.org/10.1145/37402.37427
[7] McInerney T., Terzopoulos D. A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Comput. Med. Imaging Graph., 1995, vol. 19, no. 1, pp. 69–83, doi: https://doi.org/10.1016/0895-6111(94)00040-9
[8] Terzopoulos D., Witkin A., Kass M. Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell., 1988, vol. 36, no. 1, pp. 91–123, doi: https://doi.org/10.1016/0004-3702(88)90080-X
[9] Popov V.V., Sorokin F.D., Ivannikov V.V. A flexible rod finite element with separate storage of cumulated and extra rotations for large displacements of aircraft structural parts modeling. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/published.php?ID=76832 (in Russ.).
[10] Battini J.M., Pacoste C. Co-rotational beam elements with warping effects in instability problems. Comput. Methods Appl. Mech. Engng., 2002, vol. 191, no. 17–18, pp. 1755–1789, doi: https://doi.org/10.1016/S0045-7825(01)00352-8
[11] Nizametdinov F.R., Sorokin F.D. Euler vector application specifics for large turns description while flying vehicles structural elements modeling on the example of a rod finite element. Trudy MAI, 2018, no. 102. URL: https://trudymai.ru/published.php?ID=98753 (in Russ.).
[12] ANSYS mechanical APDL tutorials. URL: http://www.worldcolleges.info/sites/default/files/me1.pdf (accessed: 15.06.2024).
[13] Gaydzhurov P.P., Iskhakova E.R., Savelyeva N.A. et al. Study of stress-strain states of a regular hinge-rod constructions with kinematically oriented shape change. International Journal for Computational Civil and Structural Engineering, 2020, vol. 16, no. 1, pp. 38–47.
[14] Tsaritova N.G., Buzalo N.A. Sharnirnyy uzel prostranstvennoy sterzhnevoy konstruktsii regulyarnoy struktury [Hinge joint of spatial beam structure of regular structure]. Patent RU 2586351. Appl. 12.01.2015, publ. 10.06.2016. (In Russ.).
[15] Perelmuter A.V., Kabantsev O.V. Analiz konstruktsiy s izmenyayushcheysya raschetnoy skhemoy [Structure analysis with changing design scheme]. Moscow, SKAD SOFT Publ., ASV Publ., 2015. 148 p. (In Russ.).