Development of a method for accelerated assessment of the relative gain in the input technical work in the compression process and the polytropic index of the final parameters in a piston compressor with a two-phase working fluid
Authors: Shcherba V.E., Kuzhbanov A.K., Gildebrandt M.I., Kudentsov V.Y., Galdin N.S., Gladenko A.A. | Published: 14.08.2025 |
Published in issue: #8(785)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: piston compressor, coolant injection, technical operation gain, compression polytrophic index, interpolation polynomials |
The paper proposes a method in determining a relative gain in the technical work supplied during the compression process and the polytropic index of the final parameters of the two-phase working fluid compression process using a simplified method based on applying the interpolation polynomials constructed for the multidimensional space. It is determined by the main independent variables that are significantly influencing the objective functions: relative number and average radius of the injected liquid droplets, injection pressure and the crankshaft speed. The constructed regression polynomials of the first and second order are describing alteration in the objective functions quite well depending on the independent variables. For the first-order polynomial, standard deviation is 2.0 ... 2.6 %, for the second-order polynomial — 1.0 %. The obtained polynomials could be used in both the research purposes and practice.
EDN: YAHDKA, https://elibrary/yahdka
References
[1] Kotkas L., Zhurkin N., Donskoy A. et al. Design and mathematical modeling of a pneumatic artificial muscle-actuated system for industrial manipulators. Machines, 2022, vol. 10, no. 10, art. 885, doi: https://doi.org/10.3390/machines10100885
[2] Plastinin P.I. Porshnevye kompressory. T. 1. Teoriya i raschet [Piston compressors. Vol. 1. Theory and calculation.]. Moscow, Kolos Publ., 2006. 456 p. (In Russ.).
[3] Fotin B.S., ed. Porshnevye kompressory [Piston compressors]. Leningrad, Mashinostroenie Publ., 1987. 372 p. (In Russ.).
[4] Shcherba V.E., Khait A., Nosov E.Yu. et al. Numerical analysis of unsteady heat transfer in the chamber in the piston hybrid compressor with regenerative heat exchange. Machines, 2023, vol. 11, no. 3, art. 363, doi: https://doi.org/10.3390/machines11030363
[5] Khait A., Shcherba V., Nosov E. Numerical and experimental investigation of the hybrid piston compressor using the novel multi-time-scale OpenFOAM®-based model. Appl. Therm. Eng., 2024, vol. 249, art. 123448, doi: https://doi.org/10.1016/j.applthermaleng.2024.123448
[6] Shcherba V.E., Bolshtyanskiy A.P., Azyabin Z.V. et al. Sposob raboty sistemy zhidkostnogo okhlazhdeniya mashiny obemnogo deystviya i ustroystvo dlya ego osushchestvleniya [Method for operation of the liquid cooling system of the positive displacement machine and the device for its implementation]. Patent RU 2763099. Appl. 18.03.2021, publ. 27.12.2021. (In Russ.).
[7] Shcherba V.E. Teoriya, raschet i konstruirovanie porshnevykh kompressorov obemnogo deystviya [Theory, calculation and design of reciprocating compressors of volumetric action]. Moscow, Yurayt Publ., 2019. 323 p. (In Russ.).
[8] Plastinin P.I., Shcherba V.E. Rabochie protsessy obemnykh kompressorov so vpryskom zhidkosti [Working processes of volumetric compressors with liquid injection]. Moscow, VINITI Publ., 1996. 153 p. (In Russ.).
[9] Sakun I.A. Vintovye kompressory [Screw compressors]. Leningrad, Mashinostroenie Publ., 1970. 400 p. (In Russ.).
[10] Khlumskiy V. Rotatsionnye kompressory i vakuum-nasosy [Rotary compressors and vacuum pumps]. Moscow, Mashinostroenie Publ., 1971. 128 p. (In Russ.).
[11] Voropay P.I. Effective way of air cooling in reciprocating compressors. Promyshlennaya energetika, 1963, no. 12, pp. 24–29. (In Russ.).
[12] Slobodyanyuk L.I., Gogin Yu.N. Cooling of a compressor by water injection into a cylinder. Izvestiya VUZov. Energetika, 1961, no. 9, pp. 62–66. (In Russ.).
[13] Jin Y., Guo Y., Zhang S. et al. Study on the dynamic characteristics of the free piston in the ionic liquid compressor for hydrogen refuelling stations by the fluid-structure interaction modelling. Int. J. Hydrogen Energy, 2023, vol. 48, no. 65, pp. 25410–25422, doi: https://doi.org/10.1016/j.ijhydene.2023.03.202
[14] Rafiq M.Y., Bugmann G., Easterbrook D.J. Neural network design for engineering applications. Comput. Struct., 2001, vol. 79, no. 17, pp. 1541–1552, doi: https://doi.org/10.1016/S0045-7949(01)00039-6
[15] Lagrandeur J., Poncet S., Sorin M. et al. Thermodynamic modeling and artificial neural network of air counterflow vortex tubes. Int. J. Therm. Sci., 2019, vol. 146, art. 106097, doi: https://doi.org/10.1016/j.ijthermalsci.2019.106097
[16] Iman R.L., Helton J.C., Campbell J.E. An approach to sensitivity analysis of computer models: Part I — Introduction, input variable selection and preliminary variable assessment. J. Qual. Technol., 1981, vol. 13, no. 3, pp. 174–183, doi: https://doi.org/10.1080/00224065.1981.11978748
[17] Iman R.L. Latin hypercube sampling. In: Encyclopedia of quantitative risk analysis and assessment. Wiley, 2008, doi: https://doi.org/10.1002/9780470061596.risk0299
[18] Dhuper K., Akula R., Duttagupta S. et al. Enhancement of heat transfer using conical fins for electronic cooling and their design optimization for maximum thermal regulation using ANN assisted NSGA II. Int. J. Therm. Sci., 2024, vol. 202, art. 109092, doi: https://doi.org/10.1016/j.ijthermalsci.2024.109092