An Analysis of Destructive Methods of Thin Films Thickness Measurement
Authors: Shupenev A.E., Pankova N.S., Korshunov I.S., Grigoriyants A.G. | Published: 12.03.2019 |
Published in issue: #3(708)/2019 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: thin films thickness, bevel cut method, spherical cut method, stylus profilometry, atomic-force microscopy |
Thin film technologies are widely used in science and industry and have a critical value for optics and electronics. Special properties of thin films are related to their thickness, usually ranging between 1 nm and 1 um. Measuring such a thickness is a challenging task, always concomitant with the stage of technology development. When using witness samples and specimen control groups, destructive methods can be employed to measure the thickness of the deposited layers. An analysis of the most commonly used destructive methods of measuring the thickness of thin films is conducted, the results of which can be used for selecting a suitable method when planning corresponding experiments. This work describes theoretical and practical considerations of using bevel cut method, spherical cut method, atomic force microscopy and stylus profilometry for measuring thin film thickness.
References
[1] Mayssel L., Gleng R. Technology of Thin Films: Handbook. New York, McGraw-Hill, 1970. (Russ. ed.: Mayssel L., Gleng R. Tekhnologiya tonkikh plenok (spravochnik). Vol. 2. Moscow, Sovetskoye radio publ., 1977. 768 p.
[2] Sherchenkov A.A., Shtern Yu.I. Materialy elektronnoy tekhniki: Laboratornyy praktikum [Electronic equipment: Laboratory workshop]. Pt. 3. Moscow, MIET publ., 2004. 86 p.
[3] Antonenko S.V. Tekhnologiya tonkikh plenok [Thin film technology]. Moscow, MIFI publ., 2008. 104 p.
[4] Handbook of thin film deposition. Ed. Seshan K., Schepis D. William Andrew, 2018. 470 p.
[5] Venables J.A., Spiller G.D.T., Hanbucken M. Nucleation and growth of thin films. Reports on progress in physics, 1984, vol. 47, no. 4, pp. 399–459, doi: 10.1088/0034-4885/47/4/002
[6] Oreshkin O.M. Razrabotka sistemy nepreryvnogo kontrolya sherokhovatosti poverkhnosti dlya povysheniya effektivnosti tekhnologii lazernogo polirovaniya aviatsionnykh detaley. Kand. Diss. [Development of a system for continuous monitoring of surface roughness to improve the efficiency of laser polishing technology for aircraft parts. Cand. Diss.] Moscow, 2017. 134 p.
[7] Lee B.S., Strand T.C. Profilometry with a coherence scanning microscope. Applied optics, 1990, vol. 29, no. 26, pp. 3784–3788, doi: 10.1364/AO.29.003784
[8] Su X., Chen W. Fourier transform profilometry: a review. Optics and lasers in Engineering, 2001, vol. 35, no. 5, pp. 263–284, doi: 10.1016/S0143-8166(01)00023-9
[9] Wang Z., Nguyen D.A., Barnes J.C. Some practical considerations in fringe projection profilometry. Optics and Lasers in Engineering, 2010, vol. 48, no. 2, pp. 218–225, doi: 10.1016/j.optlaseng.2009.06.005
[10] Fizika tonkikh plenok. T. 3. Sovremennoye sostoyaniye issledovaniy i tekhnicheskiye primeneniya [Physics of thin films. Vol. 3. Current State of Research and Technical Applications]. Ed. Khass G., Tun R.E. Moscow, Mir publ., 1968. 331 p.
[11] Novodvorskiy O.A., Khramova O.D., Ventselʹ K., Barta Y.V. Dimensional effects of static conductivity in tantalum thin films. Journal of Applied Physics, 2005, vol. 75, no. 6, pp. 42–45 (in Russ.).
[12] Metfessel’ S. Tonkiye plenki, ikh izgotovleniye i izmereniye [Thin films, their manufacture and measurement]. Moscow, Leningrad, Gosenergoizdat publ., 1963. 272 p.
[13] Sergeyev A.G. Vvedeniye v nanometrologiyu [Introduction to nanometrology]. Vladimir, VlSU publ., 2010. 296 p.
[14] Gallyamov M.O. Skaniruyushchaya zondovaya mikroskopiya nukleinovykh kislot i tonkikh organicheskikh plenok. Kand. Diss. [Scanning probe microscopy of nucleic acids and thin organic films. Cand. Diss.]. Moscow, 1999. 227 p.
[15] Ishchenko A.A., Fetisov G.V., Aslanov L.A. Nanokremniy: svoystva, polucheniye, primeneniye, metody issledovaniya i kontrolya [Nano-silicon: properties, production, application, methods of research and control]. Moscow, Fizmatlit publ., 2012. 648 p.
[16] Smith D.L. Thin-Film Deposition: Principles and Practice. McGraw-Hill Education, 1995. 616 p.
[17] Eaton P., West P. Atomic force microscopy. Oxford, Oxford University Press, 2010. 248 p.
[18] Kats M.A., Blanchard R., Genevet P., Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature materials, 2013, vol. 12, no. 1, pp. 20–24, doi: 10.1038/nmat3443
[19] Rugar D. Atomic force microscopy. Physics today, 1990, vol. 43, no. 10, pp. 23–30, doi: 10.1063/1.881238
[20] Nanotekhnologii v poluprovodnikovoy elektronike [Nanotechnology in semiconductor electronics]. Ed. Aseyev A.L. Novosibirsk, SO RAN publ., 2004. 368 p.
[21] Morita S., Giessibl F.J., Meyer E., Wiesendanger R. Noncontact atomic force microscopy. Vol. 3. Springer, 2015. 539 p.
[22] Vishnyakov N.V., Mishustin V.G., Avachev A.P., Shilin A.V. Diagnostics of thin-film micro- and nanostructures based on disordered semiconductors. Diagnostika nanomaterialov i nanostruktur. Trudy 5 Vserossiyskoy shkoly-seminara studentov, aspirantov i molodykh uchenykh [Diagnostics of nanomaterials and nanostructures. Proceedings of the 5 All-Russian Workshop School for Students, Postgraduates and Young Scientists]. Vol. II, Ryazan, 2012, pp. 114.
[23] Tolstikhina A.L. Atomno-silovaya mikroskopiya kristallov i plenok so slozhnoy morfologiyey poverkhnosti. Dokt. Diss. [Atomic force microscopy of crystals and films with complex surface morphology. Doct. Diss.]. Moscow, 2013. 333 p.
[24] Todua P.A. Metrology in nanotechnology. Rossiyskiye nanotekhnologii, 2007, vol. 2, no. 1–2, pp. 61–69 (in Russ.).