Parallel-Serial Structure Manipulator Control Signals Dynamics and Synthesis
Authors: Zhoga V.V., Dyashkin-Titov V.V., Vorobyeva N.S., Dyashkin А.V. | Published: 02.08.2022 |
Published in issue: #8(749)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: parallel-serial structure manipulator, equations of dynamics, control signal synthesis |
The article describes synthesis of a dynamic algorithm for generating control signals of executive motors ensuring the implementation of the required trajectories and laws of motion of the parallel structure manipulator working body. Analytical expressions for the control signals of drive electric motors are obtained. The algorithm is constructed using nonlinear equations of the manipulator mechanism dynamics and the characteristics of its drives. The proposed algorithm for calculating control forces is one of the algorithms of the compensating type. A numerical example of the implementation of the obtained control laws is given.
References
[1] Liu N., Wu J. Kinematics and application of a hybrid industrial robot Delta-RST. Sens. Transducers, 2014, vol. 169, no. 4, pp. 186–192.
[2] Tanev T.K. Kinematics of a hybrid (parallel-serial) robot manipulator. Mech. Mach. Theory, 2000, vol. 35, no. 9, pp. 1183–1196, doi: https://doi.org/10.1016/S0094-114X(99)00073-7
[3] Tsai L.-W., Joshi S. Kinematics analysis of 3-DOF position mechanisms for use in hybrid kinematic machines. J. Mech. Des., 2002, vol. 124, no. 2, pp. 245–253, doi: https://doi.org/10.1115/1.1468860
[4] Ibrahim O., Khalil W. Inverse and direct dynamic models of hybrid robots. Mech. Mach. Theory, 2010, vol. 45, no. 4, pp. 627–640, doi: https://doi.org/10.1016/j.mechmachtheory.2009.11.007
[5] Staicu S. Dynamics modelling of a Stewart-based hybrid parallel robot. Adv. Robot., 2015, vol. 29, no. 14, pp. 929–938, doi: https://doi.org/10.1080/01691864.2015.1023219
[6] Li Y., Xu Q. Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism. Robotica, 2005, vol. 23, no. 2, pp. 219–229, doi: https://doi.org/10.1017/S0263574704000797
[7] Zhoga V.V., Dyashkin-Titov V.V., Dyashkin A.V. et al. Manipulyator-tripod promyshlennogo naznacheniya [Industrial purpose tripod manipulator]. Patent RU 2651781. Appl. 12.04.2017, publ. 23.04.2018.
[8] Zhoga V.V., Dyashkin-Titov V.V., Nesmiyanov I.A. et al. Manipulator of a parallel-series structure with a controlled gripper positioning task. Mekhatronika, avtomatizatsiya, upravlenie, 2016, vol. 17, no. 8, pp. 525–530, doi: https://doi.org/10.17587/mau.17.525-530 (in Russ.).
[9] Lur’ye A.I. Analiticheskaya mekhanika [Analytical mechanics]. Moscow, Fizmatgiz Pul., 1961. 824 p. (In Russ.).
[10] Kolovskiy M.Z., Sloushch A.V. Osnovy dinamiki promyshlennykh robotov [Fundamentals of industrial robots mechanics]. Moscow, Nauka Publ., 1988. 240 p.
[11] Nesmiyanov I., Zhoga V., Skakunov V. et al. Synthesis of control algorithm and computer simulation of robotic manipulator-tripod. In: Creativity in intelligent technologies and data science. Springer, 2015, pp. 391–403.
[12] Dyashkin-Titov V.V., Zhoga V.V., Nesmiyanov I.A. et al. Dynamics of the manipulator parallel-serial structure. In: Advances in mechanical engineering. lecture notes in mechanical engineering. Springer, 2018, pp. 33–43.
[13] Zhoga V., Dyashkin-Titov V., Nesmiyanov I. et al. Algorithm to synthesize control force for tripod manipulator drives. In: Proc. 14th Int. Conf on Electromechanics and Robotics “Zavalishin’s Readings”. Springer, 2020, pp. 223–235.
[14] Zhoga V.V., Gerasun V.M., Nesmiyanov I.A. et al. Dynamic creation of the optimum program motion of a manipulator-tripod. J. Mach. Manuf. Reliab., 2015, vol. 44, no. 2, pp. 180–185, doi: https://doi.org/10.3103/S1052618815020168
[15] Zhuravlev V.F. Osnovy teoreticheskoy mekhaniki [Fundamentals of theoretical mechanics]. Moscow, Fizmatlit Publ., 2001. 320 p. (In Russ.).
[16] Kheylo S.V., Glazunov V.A., Palochkin S.V. Manipulyatsionnye mekhanizmy parallel’noy struktury [Parallel handling mechanisms]. Moscow, MGTU im. A.N. Kosygina Publ., 2011. 153 p. (In Russ.).
[17] Khapkina I.K. The control algorithm for manipulation robots, built on the equations of dynamics. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula state university. Technical sciences], 2016, no. 2, pp. 296–304. (In Russ.).