An General theory of structural synthesis of normal, paradoxical Self- Aligning lever mechanisms and the practice of their creation in mechanical engineering for operation in different h-spaces
Authors: Pozhbelko V.I. | Published: 09.06.2023 |
Published in issue: #6(759)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: optimal structural synthesis, self-aligning mechanisms, redundant links, cylindrical hinges, Bennett mechanism, Bricard’s mechanism |
The paper presents general theory of structural synthesis of the self-aligning lever mechanisms consisting of closed circuits without harmful excess connections and operating in the given full space with the number of freedom degrees of h (1 ? h ? 6). This theory includes new analytical structural dependences of the input and output parameters to construct mechanisms missing the redundant connections and designed for directed structural synthesis and analysis, taking into account the new trigonometric objective function of the structural synthesis, angular structural equations and extended structural mathematical model of all possible self-aligning mechanisms. Effectiveness of the structural synthesis proposed general theory was confirmed by examples of structures (at the inventions level) built on the basis of cylindrical hinges with the different possible mutual arrangement of their axes. They include vibration mechanism with the elastic dynamic bonds, space flat manipulator of the spatial mixer, folding articulated manipulator, multi-capacity turbulent mixer and spatial parallelogram manipulator without special uncontrolled and “dead” positions. Operability of all synthesized lever mechanisms designed to operate in the homogeneous and mixed spaces was theoretically confirmed according to a new universal (unified) structural formula for calculating the mechanism mobility, as well as by the prepared experimental models of the operating mechanisms made on the basis of new single-moving rotational kinematic pairs.
References
[1] Artobolevskiy I.I. Mekhanizmy v sovremennoy tekhnike [Mechanisms in modern technics]. Moscow, LENAND Publ., 2019. 500 p. (In Russ.).
[2] Glazunov V.A., ed. Novye mekhanizmy v sovremennoy robototekhnike [New mechanisms in modern robotics]. Moscow, Tekhnosfera Publ., 2018. 316 p. (In Russ.).
[3] Mudrov A.G., Mudrova A.A., Sakhapov R.L. Prostranstvennye apparaty s meshalkoy i smesiteli [Spatial apparatus with agitators and mixers]. Moscow, KnoRus Publ., 2021. 190 p. (In Russ.).
[4] Markovets K.I., Polotebnov V.O. Synthesis of mechanisms of material handling mechanism with a toothed bar straight line section of the movement. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya legkoy promyshlennosti [The News of Higher Educational Institutions. Technology of Light Industry], 2018, vol. 39, no. 1, pp. 117–121. (In Russ.).
[5] Smelyagin A.I., Prikhodko A.A. Structural synthesis of reciprocating rotational mixing device complex actuator. Izvestiya vysshikh uchebnykh zavedeniy. Pishchevaya tekhnologiya [Izvestiya Vuzov. Food Technology], 2014, no. 5–6, pp. 85–87. (In Russ.).
[6] Pozhbelko V.I. A unified theory of structure, synthesis and analysis of multibody mechanical systems with geometrical, flexible and dynamic connections. Part 1. Basic structural equations and universal structure tables. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 9, pp. 24–43, doi: https://doi.org/10.18698/0536-1044-2020-9-24-43 (in Russ.).
[7] Kuts E.N. [Modern mechanical engineering: science and education structural synthesis of multiloop linkage mechanisms with multiple joints and the mostcomplex binary link]. Sovremennoe mashinostroenie. Nauka i obrazovanie. Mat. 8-oy Mezhd. nauch.-prakt. konf. [Modern Mechanical Engineering: Science and Education. Proc. 8th Sci.-Pract. Conf.]. Sankt-Petersburg, Politekh-Press Publ., 2019, pp. 201–214. (In Russ.).
[8] Pozhbelko V. Type synthesis method of planar and spherical mechanisms using the universal structural table with all possible link assortments. IFToMM WC-2019, Springer, 2019, vol. 73, pp. 1517–1526, doi: https://doi.org/10.1007/978-3-030-20131-9_150
[9] Sun W., Kong J., Sun L. et al. A joint–joint matrix representation of planar kinematic chains with multiple joints and isomorphism identification. Adv. Mech. Eng., 2018, vol. 10, no. 6, doi: https://doi.org/10.1177/1687814018778404
[10] Zou Y., He P., Pei Y. Automatic topological structural synthesis algorithm of planar simple joint kinematic chains. Adv. Mech. Eng., 2016, vol. 8, no. 3, doi: http://dx.doi.org/10.1177/1687814016638055
[11] Ding H.F., Hou F.M., Kecskemethy A. Synthesis of the whole family of 1-DOF kinematic chains. Mech. Mach. Theory, 2012, vol. 47 no. 1, pp. 1–15, doi: https://doi.org/10.1016/j.mechmachtheory.2011.08.011
[12] Chen L.M. Digital and discrete geometry. Springer, 2014. 322 p.
[13] Norton R.L. Design in machinery. McGraw Hill, 2012. 857 p.
[14] Muller A. Kinematic topology and constraints of multi-loop linkages. Robotica, 2018, vol. 36, no. 11, pp. 1641–1663, doi: https://doi.org/10.1017/S0263574718000619
[15] Talaba D. Mechanical models and the mobility of robots and mechanisms. Robotica, 2015, vol. 33, no. 1, pp. 181–193, doi: https://doi.org/10.1017/S0263574714000149
[16] Babichev D., Evgrafov A., Lebedev S. Lever mechanisms: the new approach to structural synthesis and kinematic analysis. IFToMM WC-2019. Springer, 2019, pp. 1030–1050, doi: https://doi.org/10.1007/978-3-030-20131-9_56
[17] Peisakh E.E. An algorithmic description of the structural synthesis of planar Assur group. J. Mach. Manuf. Reliab., 2007, vol. 36, no. 6, pp. 505–514, doi: https://doi.org/10.3103/S1052618807060015
[18] Vicker J.J., Pennock G.R., Shingley J.E. Theory of mechanisms. Oxford University Press, 2017. 950 p.
[19] Ceccarelli M. Fundamentals of mechanics of robotic manipulation. Springer, 2004. 312 p.
[20] Kong X., Gosselin C.M. Type synthesis of parallel mechanisms. Springer, 2007. 268 p.
[21] Gogu G. Structural synthesis of parallel robots. Part 1: Methodology. Springer, 2008. 706 p.
[22] Tsai L.W. Robot Analysis. The mechanics of serial and parallel manipulators. Wiley, 1999. 520 p.
[23] Aefattani R., Luck C.A. A lamina-emergent frustum using a bistable collapsible compliant mechanism. J. Mech. Des., 2018, vol. 140, no. 12, art. 125001, doi: https://doi.org/10.1115/1.4037621
[24] Peisakh E.E. Technique of automated structural synthesis of planar jointed mechanisms. J. Mach. Manuf. Reliab., 2009, vol. 38, no. 1, pp. 62–70, doi: https://doi.org/10.3103/S1052618809010129
[25] Ding H., Hou F., Kecskemethy A. et al. Synthesis of a complete set of contracted graphs for planar non-fractionated simple-jointed kinematic chains with all possible DOFs. Mech. Mach. Theory, 2011, vol. 46, no. 11, pp. 1588–1600, doi: https://doi.org/10.1016/j.mechmachtheory.2011.07.012
[26] Pozhbelko V. Advanced technique of type synthesis and construction of veritable complete atlases of F-DOF generalized kinematic chains. In: EnCoMes-2018. Springer, 2019, vol. 59, pp. 207–214, doi: https://doi.org/10.1007/978-3-319-98020-1_24
[27] Pozhbelko V. A unified structure theory of multibody open, closed loop and mixed mechanical systems with simple and multiple joint kinematic chains. Mech. Mach. Theory, 2016, vol. 100, no. 6, pp. 1–16, doi: https://doi.org/10.1016/j.mechmachtheory.2016.01.001
[28] Kozhevnikov S.N. Osnovaniya strukturnogo sinteza mekhanizmov [Fundamentals of structural synthesis of mechanisms.]. Kiev, Naukova Dumka Publ., 1979. 232 p. (In Russ.).
[29] Umnov N.V., Silvestrov E.E. [Using homotopy methods for mechanism synthesis.]. St. dok. mezhd. konf. po teorii mekhanizmov i mashin [Proc. Int. Conf. on. Mechanisms and Machine Theory]. Krasnodar, Kubanskiy GTU Publ., 2006, pp. 47–48. (In Russ.).
[30] Timofeev G.A., ed. Teoriya mekhanizmov i mashin [Mechanisms and machines theory]. Moscow, Bauman MSTU Publ., 2017. 566 p. (In Russ.).
[31] Kraynev A.F. Mekhanika mashin [Machine mechanics]. Moscow, Mashinostroenie Publ., 2001. 904 p. (In Russ.).
[32] Reshetov L.N. Samoustanavlivayushchiesya mekhanizmy [Self-aligning mechanisms]. Moscow, Mashinostroenie Publ., 1991. 288 p. (In Russ.).
[33] Nesmeyanov I.A. Structural synthesis of self-aligning gears of industrial robots with parallel kinematics. Vestnik Bryanskogo GTU [Bulletin of Bryansk State Technical University], 2019, no. 4, pp. 4–13, doi: https://doi.org/10.30987/article_5cb58f4ed2c444.85435034 (in Russ.).
[34] Pozhbelko V.I. Universal algorithm for the synthesis of structural schemes of complex single and multi-moving lever mechanisms. Sovremennoe mashinostroenie. Nauka i obrazovanie, 2022, no. 11, pp. 91–100. (In Russ.).
[35] Vyshnegradskiy I.A. Publichnye populyarnye lektsii o mashinakh. O teorii mekhanizmov bez formul [Public popular lections on machines. On mechanisms theory without formulas]. Moscow, Librikom Publ., 2015. 448 p. (In Russ.).
[36] Racila L., Dahah M. Bricard mechanism used a translator. 12th IFToMM World Congress. Besanson, 2007, pp. 337–341.
[37] Pozhbelko V.I. Dvukhpodvizhnaya razemnaya vrashchatelnaya kinematicheskaya para [Two-degrees-of-freedom rotational kinematic pair]. Patent RU 2755441. Appl. 16.03.2021, publ. 16.09.2021. (In Russ.).
[38] Pozhbelko V.I. Mnogokratnyy kompaktnyy sharnir peredachi [Multiple articulated joint of gear]. Patent RU 2543135. Appl. 14.02.2013, publ. 27.02.2015. (In Russ.).
[39] Pozhbelko V.I. [Dynamic structure of mechanisms]. Mat. vtoroy mezhd. konf. Mekhanizmy peremennoy struktury i vibratsionnye mashiny [Proc. Second Int. Conf. on Mechanisms of Variable Structure and Vibrating Machines]. Bishkek, IMASh NAN KR, 1995, pp. 69–73. (In Russ.).
[40] Pozhbelko V.I. Inertsionno-impulsnoe privody mashin s dinamicheskimi svyazyami [Inertial-pulse drive of machines with dynamic linkage]. Moscow, Mashinostroenie Publ., 1989. 132 p. (In Russ.).
[41] Pozhbelko V.I. Teoriya i metody sozdaniya inertsionno-impulsnykh sistem s zadannymi svoystvami. Diss. D-ra. tekhn. nauk [Inertial-pulse drive of machines with dynamic coupling. Doc. tech. sci. diss.]. Kazan, KGU Publ., 1989. 220 p. (In Russ.).
[42] Pozhbelko V.I. Sharnirnyy vibroudarnyy mekhanizm [Hinged vibro-impact mechanism]. Patent RU 2783900. Appl.27.07.2022, publ. 21.11.2022. (In Russ.).
[43] Pozhbelko V.I. Prostranstvennyy G-robot [Spatial G-robot]. Patent RU 2758392. Appl. 28.10.2021, publ. 16.03.2022. (In Russ.).
[44] Pozhbelko V.I. Sharnirnyy mekhanizm izmenyaemoy struktury [Articulated mechanism of variable structure]. Patent RU 2765386. Appl. 28.01.2022, publ. 12.05.2021. (In Russ.).
[45] Pozhbelko V.I. Prostranstvennyy manipulyator [Spatial manipulator]. Patent RU 2758377. Appl. 24.02.2021, publ. 28.10.2021. (In Russ.).
[46] Pozhbelko V.I. Sharnirnyy mekhanizm [Pivot mechanism]. Patent RU 2753064. Appl. 24.02.2021, publ. 11.08.2021. (In Russ.).
[47] Pozhbelko V.I. Prostranstvennyy parallelogrammnyy mekhanizm manipulyatora [Spatial parallelogram mechanism of manipulator]. Patent RU 2784764. Appl. 07.04.2022, publ. 29.11.2022. (In Russ.).
[48] Kolovsky M.Z., Evgrafov A.N., Semenov Yu.A. et al. Advanced theory of mechanisms and machines. Springer, 2000. 394 p.