Transient processes in an active vibration isolation system with the vibroactive forces inertial compensator
Authors: Buryan Yu.A., Shalai V.V., Sitnikov D.V., Buryan A.A. | Published: 01.08.2023 |
Published in issue: #8(761)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: control system, transient process, electrodynamic compensator, vibration isolation system, rubber-cord pneumatic spring, vibroactive forces |
Transient processes were analyzed in the automatic control system of the vibroactive forces electrodynamic compensator. Active vibration isolation system was considered, where a pneumatic spring based on the rubber-cord shell and the vibroactive forces electrodynamic compensator with a hydraulic inertial motion transducer were combined in a single construct. The paper shows that to ensure high efficiency of the vibration isolation, the gain in the electrodynamic compensator control circuit should be sufficiently large, but this leads to an increase in the transient process and the oscillation period duration. The proportional-integral controller could be introduced to reduce the oscillation index in the control system. However, the inertial mass oscillation center is shifting in the electrodynamic compensator in this case, which could lead to losses in its performance. An approach to solving this problem is proposed using the mechanism of averaging the measured current in the control coil and subtracting it from the current value, which makes it possible to eliminate the inertial mass shift while maintaining the transient process short duration, when a proportional-integral controller is included in the control circuit. It is shown that reducing the transient process period due to inclusion of the proportional-integral controller in the control circuit significantly increases the vibration isolation efficiency in the vibroactive forces non-stationary mode, for example, in the start-stop mode.
References
[1] Kiryukhin A.V., Tikhonov V.A., Chistyakov A.G. et al. Active vibration protection — purpose, principles, condition. 1. Purpose and design principles. Problemy mashinostroeniya i avtomatizatsii, 2011, no. 2, pp. 108–111. (In Russ.).
[2] Eliseev S.V., Reznik Yu.N., Khomenko A.P. Mekhatronnye podkhody v dinamike mekhanicheskikh kolebatelnykh system [Mechatronical approaches in dynamics of mechanical oscillation systems]. Novosibirsk, Nauka Publ., 2011. 384 p. (In Russ.).
[3] Rybak L.A., Sinev A.V., Pashkov A.I. Sintez aktivnykh sistem vibroizolyatsii na kosmicheskikh obektakh [Synthesis of active vibration isolation systems on space objects]. Moscow, Yanus-K Publ., 1997. 160 p. (In Russ.).
[4] Petrov A.A. Stability of single-mass active vibration isolation system with force feedback. Doklady XXVII sessii RAO, 2014, pp. 1033–1043. (In Russ.).
[5] Gordeev B.A., Akimov B.A., Erofeev V.I. et al. Matematicheskie modeli adaptivnykh vibroizolyatorov mobilnykh i statsionarnykh obektov [Mathematical models of adaptive vibration isolators for mobile and stationary objects]. Nizhniy Novgorod, NGTU Publ., 2017. 123 p. (In Russ.).
[6] Izrailovich M.Ya., Grishaev A.A. Aktivnoe vibrogashenie vynuzhdennykh kolebaniy s ispolzovaniem parametricheskogo i silovogo vozdeystviy [Active vibration damping of forced vibrations using parametric and force influences]. Moscow, URSS Publ., 2012. 76 p. (In Russ.).
[7] Okhulkov S.N., Plekhov A.S., Titov D.Yu. et al. Metody i ustroystva oslableniya vibratsii elektromekhanicheskikh kompleksov [Methods and devices for vibration attenuation of electromechanical complexes]. Nizhniy Novgorod, NGTU Publ., 2016. 248 p. (In Russ.).
[8] Buryan Yu.A., Shalay V.V., Zubarev A.N. et al. Dynamic compensation for the vibro-active forces in the vibrating systems. Mekhanotronika, avtomatizatsiya, upravlenie, 2017, no. 3, pp. 192–195, doi: https://doi.org/10.17587/mau.18.192-195 (in Russ.).
[9] Buryan Yu.A., Zubarev A.V., Silkov M.V. et al. Active low-frequency vibrational-isolation system with compensation of dynamic forces. Vestnik mashinostroeniya, 2017, no. 6, pp. 18–22. (In Russ.). (Eng. version: Russ. Engin. Res., 2017, vol. 37, no. 9, pp. 754–758, doi: https://doi.org/10.3103/S1068798X17090088)
[10] Kiryukhin A.V., Milman O.O., Ptakhin A.V. Test results of an active system for reducing vibration forces and pressure pulsations. Pisma v ZhTF, 2018, vol. 44, no. 24, pp. 38–44, doi: https://doi.org/10.21883/PJTF.2018.24.47028.17443 (in Russ.). (Eng. version: Tech. Phys. Lett., 2018, vol. 44, no. 12, pp. 1136–1138, doi: https://doi.org/10.1134/S1063785018120477)
[11] Tribelskiy I.A., Shalay V.V., Zubarev A.V. et al. Raschetno-eksperimentalnye metody proektirovaniya slozhnykh rezinokordnykh konstruktsiy [Calculation and experimental methods of designing complex rubber-cord structures]. Omsk, OmGTU Publ., 2011. 238 p. (In Russ.).
[12] Zubkov A.I. Approksimatsiya kharakteristiki pnevmaticheskogo uprugogo elementa rezinokordnymi obolochkami [Approximation of pneumatic elastic element characteristics by rubber-corded shells]. V: Raschet, konstruirovanie, izgotovlenie i ekspluatatsiya. Sb. nauchn. tr. [In: Calculation, design, manufacturing and operation. Collection of scientific works]. Moscow, 1977, pp. 47–49. (In Russ.).
[13] Gordeev B.A., Erofeev V.I., Sinev A.V. et al. Sistemy vibrozashchity s «ispolzovaniem inertsionnosti i dissipatsii reologicheskikh sred [Vibration protection systems using inertia and dissipation of rheological media]. Moscow, Fizmatlit Publ., 2004. 176 p. (In Russ.).
[14] Mugin O.O., Sinev A.A. Experimental studies of vibration isolator with inertial motion conversion. Vestnik nauchno-tekhnicheskogo razvitiya, 2012, no. 4, pp. 24–31. (In Russ.).
[15] Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and regulation of hydraulic and pneumatic systems]. Moscow, Mashinostroenie Publ., 1987. 464 p. (In Russ.).