Construction of stiffness matrices of volumetric finite elements by the double approximation method and software verification
Authors: Gaydzhurov P.P. | Published: 25.10.2023 |
Published in issue: #11(764)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: finite element method, double approximation method, volumetric finite elements, finite element testing |
Numerical solution to problems of the theory of elasticity in the three-dimensional formulation with the finite element method envisages the finite elements introduction in the form of parallelepipeds, prisms and tetrahedra. As a rule, construction of the volumetric finite elements stiffness matrices is based on the isoparametricity principle. In calculation practice, the so-called multilinear isoparametric finite elements with linear law of the geometric characteristics and displacement approximation are most widely used. The main disadvantage of such elements lies in the locking effect when simulating the flexural deformations. Moreover, the numerical solution error increases significantly, if the structure compared to conventional deformations undergoes significant displacement as a rigid whole. The volumetric multilinear finite elements were constructed (based on the double approximation method) and tested making it possible to simulate the structure behavior under various types of the external influences.
References
[1] Zienkiewicz O.C., Taylor R.L. The finite element method. Vol. 1. The basis. Butterworth-Heinemann, 2000. 689 p.
[2] Hutton D.V. Fundamentals of finite element analysis. McGraw-Hill, 2004. 494 p.
[3] Logan D.L. A first course in the finite element method. University of Wisconsin-Platteville, 2011. 976 p.
[4] Sekulovich M. Metod konechnykh elementov [The finite element method]. Moscow, Stroyizdat Publ., 1993. 664 p. (In Russ.).
[5] Moaveni S. Finite element analysis. Prentice Hall, 1999. 527 p.
[6] Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsiy [The finite element method in statics and dynamics of thin-walled constructions]. Moscow, Fizmatlit Publ., 2006. 392 p. (In Russ.).
[7] Sakharov A.S., Altenbakh I., eds. Metod konechnykh elementov v mekhanike tverdykh tel [The finite element method in solid mechanics]. Kiev, Vishcha shkola Publ., 1982. 480 p. (In Russ.).
[8] Obraztsov I.F., Savelyev L.M., Khazanov Kh.S. Metod konechnykh elementov v zadachakh stroitelnoy mekhaniki letatelnykh apparatov [The finite element method in problems of structural mechanics of aircraft]. Moscow, Vysshaya shkola Publ., 1985. 392 p. (In Russ.).
[9] Eremenko S.Yu. Metody konechnykh elementov v mekhanike deformiruemykh tel [The finite element method in mechanics of deformable bodies]. Kharkov, Osnova Publ., 1991. 272 p. (In Russ.).
[10] Gaydzhurov P.P. Finite elements of increased accuracy for the solution of three-dimensional problems of elasticity theory. Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences], 2003, no. 1, pp. 54–57. (In Russ.).
[11] Pissanetzky S. Sparse matrix technology. Academic Press, 1984. 321 p. (Russ. ed.: Tekhnologiya razrezhennykh matrits, Moscow, Mir Publ., 1988. 410 p.)
[12] Chigarev A.V., Kravchuk A.S., Smalyuk A.F. ANSYS dlya inzhenerov [ANSYS for engineers]. Moscow, Mashinostroenie Publ., 2004. 512 p. (In Russ.).
[13] Basov K.A. ANSYS dlya konstruktorov [ANSYS for designers]. Moscow, DMK Press Publ., 2008. 248 p. (In Russ.).
[14] Basov K.A. ANSYS spravochnik polzovatelya [ANSYS user guide]. Moscow, DMK Press Publ., 2018. 640 p. (In Russ.).
[15] Morozov E.M., Muyzemnek A.Yu., Shadskiy A.S. ANSYS v rukakh inzhenera. Mekhanika razrusheniya [ANSYS in hands of an engineer. Destruction mechanics]. Moscow, URSS Publ., 2008. 453 p. (In Russ.).
[16] Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. McGraw-Hill, 1959. 580 p. (Russ. ed.: Plastinki i obolochki. Moscow, Nauka Publ., 1966. 636 p.)