Effect of Working Tool Parameters upon Plastic Imprint during Orbital Burnishing of Cylindrical Parts
Authors: Zaides S.A., Pham Van Anh, Klimova L.G. | Published: 15.01.2021 |
Published in issue: #2(731)/2021 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: finite element modeling, orbital burnishing, contact patch, plastic imprint, plastic indent, working tool |
The article presents the results of modeling the process of finishing and hardening cylindrical parts by orbital burnishing. A finite element model of orbital burnishing has been developed using SolidWorks software. The model allows determining some geometric characteristics of a plastic contact patch and a plastic indent, during orbital burnishing depending on the parameters of the working tool. The obtained results show that the most significant influence on the size and area of the plastic indent during orbital burnishing is exerted by the angle of inclination of the working tool and the radius of the orbital rotation, the effect of the working tool radius is less significant. With an increase in the angle of inclination of the working tool from 0 to 60°, its radius from 3 to 11 mm, and the radius of orbital rotation from 2 to 6 mm, the length of the indent increases by 1.3–3.6 times, the width – by 1.1–3.0 times, and the area of the hole by 3.7–10.3 times.
References
[1] Odintsov L.G. Uprochneniye i otdelka detaley poverkhnostnym plasticheskim deformirovaniyem. Spravochnik [Hardening and finishing of parts by surface plastic deformation. Guide]. Moscow, Mashinostroyeniye publ., 1987. 328 p.
[2] Blyumenshteyn V.Yu., Krechetov A.A., Makhalov M.S. State-of-the-Art competitive technologies of finishing and strengthening treatment with surface plastic deformation. Uprochnyayushchiye tekhnologii i pokrytiya, 2012, no. 7, pp. 7–12 (in Russ.).
[3] Vysokoenergeticheskiye protsessy obrabotki materialov. T. 18. Nizkotemperaturnaya plazma [High-energy processes of materials processing. Vol. 18. Low-Temperature plasma]. Ed. Zhukov M.F., Fomin V.M. Novosibirsk, Nauka publ., 2000. 425 p.
[4] Mashinostroyeniye. Entsiklopediya. T. IV-1: Detali mashin. Konstruktsionnaya prochnost’. Treniye, iznos, smazka [Mechanical engineering. Encyclopedia. Vol. IV-1: Machine parts. Structural strength. Friction, wear, lubrication]. Ed. Reshetov D.N. Moscow, Mashinostroyeniye publ., 1995. 864 p.
[5] Tekhnologiya i instrumenty otdelochno-uprochnyayushchey obrabotki detaley poverkhnostnym plasticheskim deformirovaniyem. Spravochnik [Technology and tools for finishing and strengthening parts processing by surface plastic deformation. Guide]. Ed. Suslov A.G. Vol. 1. Moscow, Mashinostroyeniye publ., 2014. 480 p.
[6] Rakhimyanov Kh.M., Semenova Yu.S., Sautkina M.A., Skrynnik V.A., Likhachev A.P. Providing of substrate surface quality prior to coating by ultrasonic plastic deformation treatment. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty), 2013, no. 2, pp. 4–7 (in Russ.).
[7] Effektivnyye tekhnologii poverkhnostnogo plasticheskogo deformirovaniya i kombinirovannoy obrabotki [Effective technologies for surface plastic deformation and combined processing]. Ed. Kirichek A.V. Moscow, Spektr publ., 2014. 403 p.
[8] Popov M.E. Shock-pulse machining of parts with a spring-driven tool. STIN, 2007, no. 5, pp. 24–27 (in Russ.).
[9] Lebedev V.A. Tekhnologiya dinamicheskikh metodov poverkhnostnogo plasticheskogo deformirovaniya [Technology of dynamic methods of surface plastic deformation]. Rostov-na-Donu, DGTU publ., 2006. 183 p.
[10] Rakhimyanov Kh.M., Semenova Yu.S. Surface geometry condition forecasting after ultrasonic surface plastic deformation of cylinders made of steel. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty), 2011, no. 3, pp. 11–17 (in Russ.).
[11] Papshev D.D. Otdelochno-uprochnyayushchaya obrabotka poverkhnostnym plasticheskim deformirovaniyem [Finishing and strengthening treatment by surface plastic deformation]. Moscow, Mashinostroyeniye publ., 1978. 152 p.
[12] Zaydes S.A. New surface plastic deformation techniques in the manufacture of machine parts. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova, 2018, no. 3, pp. 129–139, doi: 10.18503/1995-2732-2018-16-3-129-139
[13] Zaydes S.A., Ngo K.K. Poverkhnostnoye deformirovaniye v stesnennykh usloviyakh [Surface deformation under tight conditions]. Irkutsk, IRNITU publ., 2019. 236 p.
[14] Serga G.V. Investigation of surface-plastic deformation of parts in screw rotors. Vysokiye tekhnologii v mashinostroyenii. Sb. tr. KhGPU High technologies in mechanical engineering [High technologies in mechanical engineering. Collection of works of KhSPU]. Kharkiv, KhSPU, 1999, pp. 45–52.
[15] Zaydes S.A., Fam D.F., Ngo K.K. Novyye protsessy poverkhnostnogo plasticheskogo deformirovaniya [New processes of surface plastic deformation]. Irkutsk, IRNITU publ., 2019. 352 p.
[16] Zaydes S.A., Bobrovskiy I.N., Fam V.A. Impact of local deformation kinematics upon stressed state of surface layer. Naukoyemkiye tekhnologii v mashinostroyenii, 2019, no. 5, pp. 32–38 (in Russ.), doi: 10.30987/article_5ca3030a5bfe86.87759559
[17] Zaydes S.A., Fam V.A. Sposob poverkhnostnogo plasticheskogo deformirovaniya [Method of surface plastic deformation]. Patent no. 2707844 RF, 2019.
[18] Emel’yanov V.N. Pravka detaley mashin poverkhnostnym plasticheskim deformirovaniyem [Editing machine parts by surface plastic deformation]. Novgorod, NovGU publ., 1996. 127 p.
[19] Pashkov A.E. Tekhnologicheskiye svyazi v protsesse izgotovleniya dlinnomernykh listovykh detaley [Technological connections in the process of manufacturing long sheet parts]. Irkutsk, IrGTU publ., 2005. 138 p.
[20] Smelyanskiy V.M. Mekhanika uprochneniya detaley poverkhnostnym plasticheskim deformirovaniyem [Mechanics of hardening of parts by surface plastic deformation]. Moscow, Mashinostroyeniye publ., 2002. 300 p.