Influence of plastic instability of near-contact chip layers on the wear mechanism of a carbide tool
Authors: Kabaldin Y.G., Bashkov A.A. | Published: 30.09.2022 |
Published in issue: #10(751)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: cutting layer of chips, high degree of deformation, melting of material, vortex motion of metal, wear of carbide tool |
The mechanism of plastic deformation of the incised chip layer during cutting of carbon steels and titanium alloy is investigated. It is shown that high degrees of deformation cause melting and the vortex nature of the movement of particles of the processed material in it, causing intensive wear of the carbide tool.
References
[1] Zorev N.N. Voprosy mekhaniki protsessa rezaniya metallov [Mechanical issues of metal cutting process]. Moscow, Mashinostroenie Publ., 1956. 367 p. (In Russ.).
[2] Kabaldin Yu.G. deformation mechanisms of cut layer and chip formation. Vestnik mashinostroeniya, 1993, no. 7, pp. 25–30. (In Russ.).
[3] Kabaldin Yu.G. Build-up forming law in cutting process. Vestnik mashinostroeniya, 1995, no. 5, pp. 17–23. (In Russ.).
[4] Kabaldin Yu.G., ed. Matematicheskoe modelirovanie samoorganizuyushchikhsya protsessov v tekhnologicheskikh sistemakh obrabotki rezaniem [Mathematical modeling of self-organizing processes in technological systems of cutting processing]. Vladivostok, Dal’nauka Publ., 2000. 198 p. (In Russ.).
[5] Kabaldin Yu.G., Aleynikov A.I., Burkov A.A. Structure evolution synergetics and soliton mechanisms of friction, wearing and lubrication at cutting. Vestnik mashinostroeniya, 2000, no. 1, pp. 34–41. (In Russ.).
[6] Pavlov V.A. Structure amorphisation of metals and alloys with excessively high deformation level. Fizika metallov i metallovedenie, 1985, vol. 59, no. 4, pp. 629–649. (In Russ.).
[7] Belotserkovskiy O.M. Chislennyy eksperiment v turbulentnosti: ot poryadka k khaosu [Numerical experiment in turbulence: from order to chaos]. Moscow, Nauka Publ., 2000. 224 p. (In Russ.).
[8] Chernyy G.G. The motion of a melting body between two elastic half-spaces. Doklady AN SSSR, 1985, vol. 282, no. 4, pp. 813–818. (In Russ.).
[9] Krasulin Yu.P., Timofeev V.N. Teplovydelenie na kontaktnykh poverkhnostyakh v protsesse obrabotki metallov [Thermal radiation on contact surfaces in process of metal processing]. V: Fiziko-mekhanicheskie i teplofizicheskie svoystva metallov [In: Physical-mechanical and thermophysical properties of metals]. Moscow, Nauka, 1976, pp. 132–136. (In Russ.).
[10] Panin V.E., Likhachev V.A., Grinyaev Yu.V. Strukturnye urovni deformatsii tverdykh tel [Structure levels of solid body deformation]. Novosibirsk, Nauka Publ., 1985. 229 p. (In Russ.).
[11] Kabaldin Yu.G., Seryy S.V. Optimization of composition and functional properties of nanostructured coatings for cutting tools using the density functional. Trudy NGTU im. R.E. Alekseeva [Transactions of Nizhni Novgorod State Technical University n.a. R.Y. Alexeev], 2011, no. 2, pp. 88–94. (In Russ.).
[12] Kabaldin Yu.G., Shatagin D.A., Kolchin P.V. Upravlenie kiberfizicheskimi mekhanoobrabatyvayushchimi sistemami v tsifrovom proizvodstve na osnove iskusstvennogo intellekta i oblachnykh tekhnologiy [Control on cyberphysical machining systems in digital production based on artificial intelligence in cloud technologies]. Moscow, Innovatsionnoe mashinostroenie Publ., 2019. 293 p. (In Russ.).
[13] Kabaldin Yu.G. Improving cutter performance by the application of nanostructural coatings. Vestnik mashinostroeniya, 2010, no. 3, pp. 41–48. (In Russ.). (Eng. version: Russ. Engin. Res., 2010, vol. 30, no. 3, pp. 235–242, doi: https://doi.org/10.3103/S1068798X10030093)
[14] Kabaldin Yu.G., Kretinin O.V., Shatagin D.A. et al. Vybor sostava i struktury iznosostoykikh nanostrukturnykh pokrytiy dlya tverdosplavnogo rezhushchego instrumenta na osnove kvantovo-mekhanicheskogo modelirovaniya [Choice of composition and structure of wear-resistance nanostructural coatings for carbide cutting tools based n quantum-mechanical simulation]. Moscow, Innovatsionnoe mashinostroenie Publ., 2017. 216 p. (In Russ.).
[15] Kabaldin Yu.G., Vlasov E.E., Kuz’mishina A.M. Effect of fractal properties of nanostructured coatings on their wear resistance. Uprochnyayushchie tekhnologii i pokrytiya [Strengthening Technologies and Coatings], 2018, no. 6, pp. 275–278. (In Russ.).