Justification of the method for production of the 2NiCuMn 38-2V alloy bars to manufacture parts for the electrovacuum devices working area
Authors: Golovkin P.A. | Published: 02.03.2023 |
Published in issue: #3(756)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: electrovacuum devices, vacuum melting, fusible impurities, cold drawing, rotary forging of bars, grain boundaries |
The paper considers critical features of the chemical composition of the 2NiCuMn 38-2V alloy bars material, which could affect vacuum purity of the electrovacuum devices working area. Taking into consideration peculiarities of the electrovacuum devices manufacture technology, it is shown that the use of cold-drawn bars in manufacturing parts of their working area is technically unreasonable. It is noted that instead of the cold-drawn bars, bars obtained by hot rotational forging could be used.
References
[1] Kovalenko V.F. Teplofizicheskie protsessy i elektrovakuumnye pribory [Thermophysical processes and electrovacuum devices]. Moscow, Sovetskoe radio Publ., 1975. 216 p. (In Russ.).
[2] Yae0.021.076TU (TU 11-83). Prutki iz nemagnitnogo splava marki NMMts38-2V vakuumnoy plavki [Yae0.021.076TU (TU 11-83). Rods from NMMts38-2V non-magnetic vacuum-melted alloy]. Moscow, p/ya OZTMiTS Publ., 1983. 6 p. (In Russ.).
[3] SI0.021.039TU (TU 11-82). Prutki i polosy iz nemagnitnoy moneli vakuumnoy plavki marki NMMts 38-2V [SI0.021.039TU (TU 11-82). Rods and stripes from NMMts 38-2V non-magnetic vacuum-melted alloy]. Moscow, p/ya «Zavod «Pluton» publ., 1983. 12 p. (In Russ.).
[4] GOST 492–2006. Nikel, splavy nikelevye i medno-nikelevye, obrabatyvaemye davleniem. Marki [State standard GOST 492–2006. Nickel, nickel and copper-nickel alloys treated by pressure. Grades] Moscow, Standartinform Publ., 2011. 14 p. (In Russ.).
[5] Golovkin P.A. Obtaining bars from NiCuMn 38-2W alloy by rotary forging. Sborka v mashinostroenii, priborostroenii, 2021, no. 5, pp. 221–226. (In Russ.).
[6] Grigoryev I.S., Meylikhova E.Z., eds. Fizicheskie velichiny [Physical quantities]. Moscow, Energoatomizdat Publ., 1991. 1231 p. (In Russ.).
[7] Bokshteyn S.Z., Bronfin M.B. Protsess sublimatsii i vliyanie vakuuma na mekhanicheskie svoystva metallov [Sublimation process and effect of vacuum on mechanical properties of metals]. Moscow, Mashinostroenie Publ., 1973. 34 p. (In Russ.).
[8] Vatrushin L.S., Osintsev V.G., Kozyrev A.S. Beskislorodnaya med [Deoxidized copper]. Moscow, Metallurgiya Publ., 1982. 192 p. (In Russ.).
[9] Lebed A.B., Naboychenko S.S., Shunin V.A. Proizvodstvo selena i tellura na OAO «Uralelektromed» [Selenium and tellurium production at OAO «Uralelektromed»]. Ekaterinburg, Izd-vo Uralskogo universiteta Publ., 2015. 112 p. (In Russ.).
[10] Chizhikov D.M., Schastlivyy V.P. Selen i selenidy [Selenium and selenides]. Moscow, Nauka Publ., 1964. 320 p. (In Russ.).
[11] Kablov D.E., Sidorov V.V., Puchkov Yu.A Diffusion behavior features of impurities and microalloying additives in nickel and single crystal superalloys. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2016, no. 1, pp. 24–31. (In Russ.).
[12] Filippov K.S. Issledovanie obemnykh i poverkhnostnykh svoystv rasplavov nikelya, soderzhashchikh vrednye primesi vismut i surmu po parametram plotnosti i poverkhnostnogo natyazheniya [Study on spatial and surface properties of nickel melts including bismuth and stibious contaminants on density and surface tension parameters]. V: Institut metallurgii i materialovedeniya im. A.A. Baykova RAN. 80 let [In: Metallurgy and Material Science Institute n.a. A.A. Baykov RAS. 80 years]. Moscow, IMET RAN Publ., 2018, pp. 476–489. (In Russ.).
[13] Golovkin P.A. Improvement of quality of the parts of electronic-vacuum devices of microwave range made of oxygenfree copper. Tekhnologiya mashinostroeniya, 2020, no. 5, pp. 34–41. (In Russ.).
[14] GOST 21073.0–75. Metally tsvetnye. Opredelenie velichiny zerna. Obshchie trebovaniya [State standard GOST 21073.0–75. Non-ferrous metals. Determination of grain size. General requirements]. Moscow, Izd-vo standartov Publ., 2002. 8 p. (In Russ.).
[15] TU 48-4-280-91. Mishmetall MTs50Zh3 i MTs50Zh6 [Technical conditions TU 48-4-280-91. MTs50Zh3 and MTs50Zh6 misch metals]. Pervomayskiy, IKhMZ Publ., 1991. 56 p. (In Russ.).
[16] Golovkin P.A. Improving the quality of non-magnetic alloy tapes monel type of vacuum melting NMMTS 38-2V. Metalloobrabotka, 2021, no. 4, pp. 34–46, doi: https://doi.org/10.25960/mo.2021.4.34 (in Russ.).
[17] Golovkin P.A. Improvement in quality of bars made from vacuum melted nonmagnetic NMMTS 38-2V alloy of monel type. Sborka v mashinostroenii, priborostroenii, 2021, no. 4, pp. 151–154. (In Russ.).
[18] GOST 32597–2013. Med i mednye splavy. Vidy defektov zagotovok i polufabrikatov [State standard GOST 32597–2013. Copper and copper alloys. Defects of stocks and semifinished products]. Moscow, Standartinform Publ., 2020. 32 p. (In Russ.).
[19] GOST 30242–97. Defekty soedineniy pri svarke metallov plavleniem. Klassifikatsiya, oboznachenie i opredeleniya [State standard GOST 30242–97. Imperfections in metallic fusion welds. Classification, designation and definitions]. Moscow, Izd-vo standartov Publ., 2001. 11 p. (In Russ.).
[20] Bokshteyn B.S., Kapetskiy Ch.V., Shvindlerman L.S. Termodinamika i kinetika granits zeren v metallakh [Thermodynamics and kinetics of grain boundaries in metals]. Moscow, Metallurgiya Publ., 1986. 224 p. (In Russ.).