Influence of the pendulum surface plastic deformation on the machine part corrosion resistance
Authors: Zaides S.A., Minh Quan Ho | Published: 26.06.2023 |
Published in issue: #7(760)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: corrosion intensity, aggressive media, surface plastic deformation, machining modes, surface layer |
The paper uses the weight method in corrosion determination to establish technological parameters and modes of the pendulum surface plastic deformation of the hardened parts in regard to the corrosion resistance. The mass index was used to assess corrosion, which source was the sulfuric acid with the 15% concentration. Analysis of the experimental research data showed that corrosion resistance of the hardened parts largely depended on their surfaces roughness. Correlation dependence of the corrosion resistance on roughness was constructed. Based on the multiple regression analysis results, empirical equations were obtained to optimize corrosion resistance of the parts hardened by the pendulum surface plastic deformation. The following optimal modes of the pendulum surface plastic deformation were identified ensuring maximum corrosion resistance of the hardened parts: workpiece rotation frequency — 80…100 min?1; pendulum motion frequency of the working tool — 40...55 strokes/min; radial interference — 0.1 mm; longitudinal feed — 0.07...0.11 mm/rev; working tool rotation angle — 15...20°.
References
[1] Semenova I.V., Florianovich G.M., Khoroshilov A.V. Korroziya i zashchita ot korrozii [Corrosion and corrosion protection]. Moscow, Fizmatlit Publ., 2006. 371 p. (In Russ.).
[2] Shevchenko A.A. Khimicheskoe soprotivlenie nemetallicheskikh materialov i zashchita ot korrozii [Chemical resistance of non-metallic materials and corrosion protection]. Moscow, Khimiya Publ., KolosS Publ., 2006. 246 p. (In Russ.).
[3] McEvily A.J. Metal failures. Mechanisms, analysis, prevention. John Wiley & Sons, 2002. 324 p. (Russ. ed: Analiz avariynykh razrusheniy. Moscow, Tekhnosfera Publ., 2010. 413 p.)
[4] Kuznetsov A.M., ed. Rassledovanie intsidentov i avariy na opasnykh proizvodstvennykh obektakh [Investigation of incidents and accidents at hazardous production facilities]. Irkutsk. Izd-vo IrGTU Publ., 2011. 272 p. (In Russ.).
[5] Lebedev V.A. Effektivnye tekhnologii poverkhnostnogo plasticheskogo deformirovaniya i kombinirovannoy obrabotki [Effective techniques in surface plastic forming and combined machining]. Moscow, Spektr Publ., 2014. 402 p. (In Russ.).
[6] Biswas S., Alavi S.H., Sedai B. et al. Effect of ultrasonic vibration-assisted laser surface melting and texturing of Ti-6Al-4V ELI alloy on surface properties. J. Mater. Sci. Technol., 2019, vol. 35, no. 2, pp. 295–302, doi: https://doi.org/10.1016/j.jmst.2018.09.057
[7] Li Y.B., Zhang Q.X., Qi L. et al. Improving austenitic stainless steel resistance spot weld quality using external magnetic field. Sci. Technol. Weld. Join., 2018, vol. 23, no. 7, pp. 619–627, doi: https://doi.org/10.1080/13621718.2018.1443997
[8] Grzesik W., Rech J., Żak K. High-precision finishing hard steel surfaces using cutting, abrasive and burnishing operations. Procedia Manuf., 2015, vol. 1, pp. 619–627, doi: https://doi.org/10.1016/j.promfg.2015.09.048
[9] Roux J.D.L., Craig I.K. Requirements for estimating the volume of rocks and balls in a grinding mill. IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 1169–1174, doi: https://doi.org/10.1016/j.ifacol.2017.08.403
[10] Frihat M.H., Al Quran F.M.F., Al-Odat M.Q. Experimental investigation of the influence of burnishing parameters on surface roughness and hardness of brass alloy. Material Sci. Eng., 2015, vol. 5, no. 1, art. 1000216, doi: https://doi.org/10.4172/2169-0022.1000216
[11] Parasiz S.A., Kutucu Y.K., Karadag O. On the utilization of Sachs model in modeling deformation of surface grains for micro/meso scale deformation processes. J. Manuf. Process., 2021, vol. 68-A, pp. 1086–1099, doi: https://doi.org/10.1016/j.jmapro.2021.06.033
[12] Blyumenshteyn V.Yu., Smelyanskiy V.M. Mekhanika tekhnologicheskogo nasledovaniya na stadiyakh obrabotki i ekspluatatsii detaley mashin [Technological inheritance mechanics in the machining and operating stages of machine parts]. Moscow, Mashinostroenie Publ., 2007. 399 p. (In Russ.).
[13] Ezhelev A.V., Bobrovskiy I.N., Lukyanov A.A. Analysis of processing ways by superficial and plastic deformation. Fundamentalnye issledovaniya [Fundamental Research], 2012, no. 6–3, pp. 642–646. (In Russ.).
[14] Zaydes S.A., Kho M.K. Sposob poverkhnostno-plasticheskogo deformirovaniya naruzhnoy poverkhnosti detali v vide tela vrashcheniya [Method for surface-plastic deformation of the external surface of the part in the form of a rotation body]. Patent RU 2757643. Appl. 04.02.2021, publ. 19.10.2021. (In Russ.).
[15] Zaydes S.A., Kho M.K. Pendulum surface plastic deformation of cylindrical blanks. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya [Izvestiya. Ferrous Metallurgy], 2022, vol. 65, no. 5, pp. 344–353, doi: https://doi.org/10.17073/0368-0797-2022-5-344-353 (in Russ.).
[16] Zaydes S.A., Kho M.K. Stress–strain state of components hardened by plastic deformation under cyclic loading. Vestnik mashinostroeniya, 2022, no. 8, pp. 28–35, doi: https://doi.org/10.36652/0042-4633-2022-8-28-35 (in Russ.). (Eng. version: Russ. Engin. Res., 2022, vol. 42, no. 11, pp. 1125–1132, doi: https://doi.org/10.3103/S1068798X22110260)
[17] Zaydes S.A., Nguen V.Kh. Local loading kinematics effect on stress-strain state in deformation zone. Vestnik IrGTU [Proceedings of Irkutsk State Technical University], 2017, vol. 21, no. 6, pp. 22–29, doi: https://doi.org/10.21285/1814-3520-2017-6-22-29 (in Russ.).
[18] Florianovich G.M. Electroless dissolution of metals: substantiation and alternative notions. Elektrokhimiya, 2000, vol. 36, no. 9, pp. 1175–1181. (In Russ.). (Eng. version: Russ. J. Electrochem., 2000, vol. 36, no. 10, pp. 1037–1042, doi: https://doi.org/10.1007/BF02757521)
[19] Pakhomov V.S., Shevchenko A.A. Khimicheskoe soprotivlenie materialov i zashchita ot korrozii [Chemical resistance of materials and corrosion protection]. Moscow, Khimiya Publ., Koloss Publ., 2009. 444 p. (In Russ.).