Studying accuracy of the stepped shafts machining on the CNC lathe
Authors: Amirov F.G., Abbasov V.A., Amirli S.F., Simon Silvio, Gadymov E.Z. | Published: 15.07.2024 |
Published in issue: #7(772)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: CNC machines, lathe, stepped shaft, cutting parameters, cutting force, dimensional deviation |
CNC lathes meeting high requirements to the product lathe machining accuracy are widely used in manufacture of the stepped shafts. Their advantage over universal lathes lies not only in the high accuracy, but also in the ability to machine complex parts and automate the working process. The paper considers possibility of reaching high precision in machining the stepped shafts of a 10-ton overhead crane on the lathes. Based on design and technological computation, it was difficult to achieve the required accuracy and roughness of the machined surface in machining a stepped shaft of the overhead crane on a universal lathe. Using the CNC lathe eliminated many of the disadvantages of the step shaft finishing lathing. The paper shows that accuracy of the stepped shaft finishing on a CNC lathe is significantly influenced by the cutting mode parameters. Studies were performed making it possible to determine those parameters values that ensured the highest accuracy in the stepped shaft manufacture.
EDN: VQIEOP, https://elibrary/vqieop
References
[1] Yousefi S., Zohoor M. Experimental studying of the variations of surface roughness and dimensional accuracy in dry hard turning operation. Open Mech. Eng. J., 2018, vol. 12, no. 1, pp. 175–191, doi: http://dx.doi.org/10.2174/1874155X01812010175
[2] Yousefi S., Zohoor M., Faraji M. The variations of dimensional accuracy in dry hard turning operation. 25th Annual Int. Conf. ISME2017, 2017, vol. ISME2017-2352.
[3] Zohoor M., Yousefi S. Experimental investigation of the effect of processing parameters on the surface roughness operation for using as expert system database. J. Braz. Soc. Mech. Sci. Eng., 2018, vol. 40, no. 5, art. 273, doi: https://doi.org/10.1007/s40430-018-1187-4
[4] El-Hossainy T.M., El-Zoghby A.A., Badr M.A. et al. Cutting parameter optimization when machining different materials. Mater. Manuf. Process., 2010, vol. 25, no. 10, pp. 1101–1114, doi: https://doi.org/10.1080/10426914.2010.480998
[5] Yusubov N.D., Abbasova Kh.M. Full-factor matrix model of accuracy of dimensions performed on multi-purpose CNC machines. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) [Metal Working and Material Science], 2021, no. 4, pp. 6–20. (In Russ.).
[6] Novikov F.V., Yakimov A.V., eds. Fiziko-matematicheskaya teoriya protsessov obrabotki materialov i tekhnologii mashinostroeniya. T. 7. Tochnost obrabotki detaley mashin [Physical and mathematical theory of material processing processes and engineering technology. Vol. 7. Accuracy of machining of machine parts]. Odessa, ONPU Publ., 2004. 546 p. (In Russ.).
[7] Dolskiy A.M., Suslov A.G., Kosilova A.G. et al. Spravochnik tekhnologa-mashinostroitelya. T. 2 [Handbook of the technologist-machine engineer. Vol. 2]. Moscow, Mashinostroenie Publ., 2003. 944 p. (In Russ.).
[8] Abbasov V.A., Bashirov R.Dzh. Features of ultrasound application in plasma-mechanical processing of parts made of hard-to-process materials. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) [Metal Working and Material Science], 2022, no. 3, pp. 53–65, doi: https://doi.org/10.17212/1994-6309-2022-24.3-53-65 (in Russ.).
[9] Amirov F.G. Some aspects of increasing the efficiency of automated production lines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 9, pp. 18–23, doi: http://dx.doi.org/10.18698/0536-1044-2020-9-18-23 (in Russ.).
[10] Amirov F.G. Unification of instrumental units in the position of mechanical processing of alloys with directional crystallization of eutecnic structures on multi-stream automatic lines. Vestnik mashinostroeneniya, 2020, no. 10, pp. 79–81. (In Russ.).
[11] Amirov F.G. Distinctive features of machining operation at positions. Vestnik mashinostroeniya, 2013, no. 1, pp. 49–51. (In Russ.).
[12] Amirov F.G. Povyshenie effektivnosti avtomaticheskikh liniy s gibkoy svyazyu za schet transportno-nakopitelnykh sistem tupikovogo tipa. Diss. kand. tekhn. nauk [Increasing the efficiency of automatic lines with flexible coupling by means of dead-end transport and storage systems. Kand. tech. sci. diss.]. Moscow, IKTI RAN Publ.1997. 138 p. (In Russ.).
[13] Amirov F.G. Developing criterion and optimization of PAL system. Appl. Mech. Mater., 2013, vol. 379, pp. 244–249.
[14] Amirov F.G. Die Die Klassifizierung von Bauteilen für Regulier-Bzw. Einrichtbaren Automatischen Fertigungslinien unter Verwendung von CNC Werkzeugmaschienen. Energieeffizienz im Bauund Maschinenwesen, 2017, pp. 7–11.
[15] Amirov F.G., Gadimov E.Z., Nabiev G.N. Calculation of the accuracy of shaft processing on CNC machines. Proc. Republican Sci. Tech. Conf. Youth and Scientific Innovations. Baku, AzTU, 2022, pp. 785–790.
[16] Amirli S.F., Fritsche P., Abbasov I.T. et al. The impact of high speed mechanical processing efficiency on the production process. Herald of the Azerbaijan Engineering academy, 2022, vol. 14, no. 1, pp. 41–51.
[17] Koshin A.A., Yusubov N.D. Elements of matrix theory of multitool processing accuracy in three-dimensional setups. Vestnik mashinostroeniya, 2013, no. 9, pp. 13–17. (In Russ.).
[18] Hehenberger P. Computerunterstützte Fertigung. Springer, 2011. 265 p.
[19] Petrakov Yu.V., Drachev O.I. Avtomaticheskoe upravlenie protsessami rezaniya [Automatic control of cutting processes]. Staryy Oskol, TNT Publ., 2011. 407 p. (In Russ.).
[20] Zhitnikov Yu.Z., Zhitnikov B.Yu., Skhirtladze A.G. et al. Avtomatizatsiya tekhnologicheskikh i proizvodstvennykh protsessov v mashinostroenii [Automation of technological and production processes in mechanical engineering]. Staryy Oskol, TNT Publ., 2009. 656 p. (In Russ.).
[21] Kondakov A.I., Vasilyev A.S. Vybor zagotovok v mashinostroenii [Choice of blanks in mechanical engineering]. Moscow, Mashinostroenie Publ., 2007. 560 p. (In Russ.).
[22] Koshin A.A., Yusubov N.D. [Analytical bases of models of force interaction of subsystems of technological system in processes of machining by cutting]. Sovremennye problemy mashinostroeniya i priborostroeniya. Dok. mezhd. nauch.-tekhn. konf. [Modern Problems of Mechanical Engineering and Instrument-Making. Proc. Int. Sci.-Tech. Conf.]. Baku, AzTU Publ., 2005, pp. 67–70. (In Russ.).
[23] Bazrov B.M. Osnovy tekhnologii mashinostroeniya [Fundamentals of engineering technology]. Moscow, Mashinostroenie Publ., 2007. 736 p. (In Russ.).
[24] Strenkowski J.S., Moon K.J. Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. J. Eng. Ind., 1990, vol. 112, no. 4, pp. 313–318, doi: https://doi.org/10.1115/1.2899593
[25] Popov M., Popov A., Al-Obaidi L. Improving the accuracy of manufacturing long shafts and axes of precast rotors. E3S Web Conf., 2019, vol. 135, art. 01060, doi: https://doi.org/10.1051/e3sconf/201913501060
[26] Yousefi S., Zohoor M. Experimental studying of the variations of surface roughness and dimensional accuracy in dry hard turning operation. Open Mech. Eng. J., 2018, vol. 12, no. 1, pp. 175–191, doi: http://dx.doi.org/10.2174/1874155X01812010175
[27] Yousefi S., Zohoor M., Faraji M. The variations of dimensional accuracy in dry hard turning operation. 25th Annual Int. Conf. ISME2017, 2017, vol. ISME2017-2352.
[28] Zohoor M., Yousefi S. Experimental investigation of the effect of processing parameters on the surface roughness operation for using as expert system database. J. Braz. Soc. Mech. Sci. Eng., 2018, vol. 40, no. 5, art. 273, doi: https://doi.org/10.1007/s40430-018-1187-4
[29] El-Hossainy T.M., El-Zoghby A.A., Badr M.A. et al. Cutting parameter optimization when machining different materials. Mater. Manuf. Process., 2010, vol. 25, no. 10, pp. 1101–1114, doi: https://doi.org/10.1080/10426914.2010.480998
[30] Yusubov N.D., Abbasova Kh.M. Full-factor matrix model of accuracy of dimensions performed on multi-purpose CNC machines. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) [Metal Working and Material Science], 2021, no. 4, pp. 6–20. (In Russ.).
[31] Novikov F.V., Yakimov A.V., eds. Fiziko-matematicheskaya teoriya protsessov obrabotki materialov i tekhnologii mashinostroeniya. T. 7. Tochnost obrabotki detaley mashin [Physical and mathematical theory of material processing processes and engineering technology. Vol. 7. Accuracy of machining of machine parts]. Odessa, ONPU Publ., 2004. 546 p. (In Russ.).
[32] Dolskiy A.M., Suslov A.G., Kosilova A.G. et al. Spravochnik tekhnologa-mashinostroitelya. T. 2 [Handbook of the technologist-machine engineer. Vol. 2]. Moscow, Mashinostroenie Publ., 2003. 944 p. (In Russ.).
[33] Abbasov V.A., Bashirov R.Dzh. Features of ultrasound application in plasma-mechanical processing of parts made of hard-to-process materials. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) [Metal Working and Material Science], 2022, no. 3, pp. 53–65, doi: https://doi.org/10.17212/1994-6309-2022-24.3-53-65 (in Russ.).
[34] Amirov F.G. Some aspects of increasing the efficiency of automated production lines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 9, pp. 18–23, doi: http://dx.doi.org/10.18698/0536-1044-2020-9-18-23 (in Russ.).
[35] Amirov F.G. Unification of instrumental units in the position of mechanical processing of alloys with directional crystallization of eutecnic structures on multi-stream automatic lines. Vestnik mashinostroeneniya, 2020, no. 10, pp. 79–81. (In Russ.).
[36] Amirov F.G. Distinctive features of machining operation at positions. Vestnik mashinostroeniya, 2013, no. 1, pp. 49–51. (In Russ.).
[37] Amirov F.G. Povyshenie effektivnosti avtomaticheskikh liniy s gibkoy svyazyu za schet transportno-nakopitelnykh sistem tupikovogo tipa. Diss. kand. tekhn. nauk [Increasing the efficiency of automatic lines with flexible coupling by means of dead-end transport and storage systems. Kand. tech. sci. diss.]. Moscow, IKTI RAN Publ.1997. 138 p. (In Russ.).
[38] Amirov F.G. Developing criterion and optimization of PAL system. Appl. Mech. Mater., 2013, vol. 379, pp. 244–249.
[39] Amirov F.G. Die Die Klassifizierung von Bauteilen für Regulier-Bzw. Einrichtbaren Automatischen Fertigungslinien unter Verwendung von CNC Werkzeugmaschienen. Energieeffizienz im Bauund Maschinenwesen, 2017, pp. 7–11.
[40] Amirov F.G., Gadimov E.Z., Nabiev G.N. Calculation of the accuracy of shaft processing on CNC machines. Proc. Republican Sci. Tech. Conf. Youth and Scientific Innovations. Baku, AzTU, 2022, pp. 785–790.
[41] Amirli S.F., Fritsche P., Abbasov I.T. et al. The impact of high speed mechanical processing efficiency on the production process. Herald of the Azerbaijan Engineering academy, 2022, vol. 14, no. 1, pp. 41–51.
[42] Koshin A.A., Yusubov N.D. Elements of matrix theory of multitool processing accuracy in three-dimensional setups. Vestnik mashinostroeniya, 2013, no. 9, pp. 13–17. (In Russ.).
[43] Hehenberger P. Computerunterstützte Fertigung. Springer, 2011. 265 p.
[44] Petrakov Yu.V., Drachev O.I. Avtomaticheskoe upravlenie protsessami rezaniya [Automatic control of cutting processes]. Staryy Oskol, TNT Publ., 2011. 407 p. (In Russ.).
[45] Zhitnikov Yu.Z., Zhitnikov B.Yu., Skhirtladze A.G. et al. Avtomatizatsiya tekhnologicheskikh i proizvodstvennykh protsessov v mashinostroenii [Automation of technological and production processes in mechanical engineering]. Staryy Oskol, TNT Publ., 2009. 656 p. (In Russ.).
[46] Kondakov A.I., Vasilyev A.S. Vybor zagotovok v mashinostroenii [Choice of blanks in mechanical engineering]. Moscow, Mashinostroenie Publ., 2007. 560 p. (In Russ.).
[47] Koshin A.A., Yusubov N.D. [Analytical bases of models of force interaction of subsystems of technological system in processes of machining by cutting]. Sovremennye problemy mashinostroeniya i priborostroeniya. Dok. mezhd. nauch.-tekhn. konf. [Modern Problems of Mechanical Engineering and Instrument-Making. Proc. Int. Sci.-Tech. Conf.]. Baku, AzTU Publ., 2005, pp. 67–70. (In Russ.).
[48] Bazrov B.M. Osnovy tekhnologii mashinostroeniya [Fundamentals of engineering technology]. Moscow, Mashinostroenie Publ., 2007. 736 p. (In Russ.).
[49] Strenkowski J.S., Moon K.J. Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. J. Eng. Ind., 1990, vol. 112, no. 4, pp. 313–318, doi: https://doi.org/10.1115/1.2899593
[50] Popov M., Popov A., Al-Obaidi L. Improving the accuracy of manufacturing long shafts and axes of precast rotors. E3S Web Conf., 2019, vol. 135, art. 01060, doi: https://doi.org/10.1051/e3sconf/201913501060