Development of special technology and technological equipment for the turbopump assembly turbine blades manufacture using the electrochemical method
Authors: Ryazantsev A.Yu., Yukhnevich S.S., Podshibyakina V.A., Ustinov K.A., Lomakin I.V. | Published: 15.08.2025 |
Published in issue: #8(785)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering | |
Keywords: turbopump assembly, turbine, electrochemistry, isostatic pressing |
Turbine blades machining is one of the most complex stages in production of the liquid rocket engine turbopump assembly. Since the blades are operating in the aggressive environment, they are manufactured of difficult-to-machine heat-resistant materials. The paper analyzes methods for manufacturing the turbine blade workpieces, and substantiates selection of the optimal method, i.e. the isostatic pressing. It presents the results of work on developing the embedded element technology and manufacture. Since mechanical methods are inexpedient, the electrochemical method is used in the workpiece final machining. A special tool and machining equipment are developed to implement the electrochemical processing. The paper shows that isostatic pressing makes it possible to manufacture workpieces with complex geometric shapes having thin edges and small radii. Using the electrochemical method provides high accuracy in the workpiece machining. A technology for manufacturing a turbine with the complex profile was developed and implemented in manufacture ensuring high precision and quality levels in accordance with the design documentation requirements.
EDN: TWXWJL, https://elibrary/twxwjl
References
[1] Dobrovolskiy M.V. Zhidkostnye raketnye dvigateli [Liquid rocket engines]. Moscow, Bauman MSTU Publ., 2016. 461 p. (In Russ.).
[2] Vorobey V.V., Loginov V.E. Tekhnologiya proizvodstva zhidkostnykh raketnykh dvigateley [Technology of production of liquid rocket engines]. Moscow, Izd-vo MAI Publ., 2001. 496 p. (In Russ.).
[3] Gakhun G., ed. Konstruktsiya i proektirovanie zhidkostnykh raketnykh dvigateley [Construction and design of liquid rocket engines.]. Moscow, Mashinostroenie Publ., 1989. 424 p. (In Russ.).
[4] Moiseev V.A., Tarasov V.A. eds. Tekhnologiya proizvodstva zhidkostnykh raketnykh dvigateley [Production technology of liquid rocket engines]. Moscow, Bauman MSTU Publ., 2015. 379 p. (In Russ.).
[5] Ivanov A.V., Melentyev V.S., Gvozdev A.S. Proektirovanie turbonasosnogo agregata ZhRD [Designing of turbopump unit for liquid rocket engine]. Samara, Izd-vo Samar. un-ta Publ., 2017. 215 p. (In Russ.).
[6] Ivanov V.K., Kashkarov A.M., Romasenko E.N. et al. Turbo-driven pump sets of liquid-propellant rocket engines at NPO "Energomash". Konversiya v mashinostroenii [Conversion in Machine Building of Russia], 2006, no. 1, pp. 15–21. (In Russ.).
[7] Krivosheev I.A., Ivashin A.F., Osipov E.V. et al. To ensure the tightness of the turbopump assemblies within the engines aircraft. Vestnik PNIPU. Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering Bulletin], 2018, no. 54, pp. 105–114, doi: https://doi.org/10.15593/2224-9982/2018.54.09 (in Russ.).
[8] Dmitrenko A.I., Ivanov A.V., Kravchenko A.G. et al. Modern oxygen-kerosene oxidiser staged-combustion cycle engines turbopumps development. Kosmonavtika, 2011, no. 2, pp. 42–49. (In Russ.).
[9] Voronezhskiy E.V., Kozhemyakin L.I., Novikov V.I. On problems of application of high-strength alloys in the impeller of the oxidizer pump of a liquid rocket engine. Trudy NPO Energomash imeni akademika V.P. Glushko, 2015, no. 32, pp. 263–274. EDN: WCEZZL (In Russ.).
[10] Logunov A.V., Shmotin Yu.N. Sovremennye zharoprochnye nikelevye splavy dlya diskov gazovykh turbin [Modern heat-resistant nickel alloys for gas turbine disks]. Moscow, Nauka i tekhnologii Publ., 2013. 256 p. (In Russ.).
[11] Rybakova V.N., Mekhtiev A.S., Nazarov V.P. Perspective materials in the production of housing parts of turbopump units. Aktualnye problemy aviatsii i kosmonavtiki, 2013, vol. 1, no. 9, pp. 62. EDN: TAPRPD (In Russ.).
[12] Krushenko G.G., Nazarov V.P., Platonov O.A. et al. Improving the quality of molded parts for aircraft engine parts. Vestnik GMS RAEN. Otdelenie metallurgii, 2017, no. 39, pp. 59–65. EDN: YVARAV (In Russ.).
[13] Ryazantsev A.Yu., Smolentsev E.V., Ustinov K.A. et al. Development of a promising technology for the embedded elements manufacture to obtain guide vanes for the turbopump units. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2024, no. 7, pp. 65–71. EDN: IBDZEW (In Russ.).
[14] Sokhin D.V., Ryazantsev A.Yu. [The use of physico-chemical methods for the manufacture of technological equipment used in isostatic pressing]. Perspektivy razvitiya dvigatelestroeniya. Mat. mezhd. nauch.-tekh. konf. im. N.D. Kuznetsova. T. 1 [Prospects of engine building development. Proc. Int. Sci.-Pract. Conf. n.a. N.D. Kuznetsov. Vol. 1]. Samara, Samarskiy un-t Publ., 2023, pp. 328–329. EDN: XFIYDS (In Russ.).
[15] Astredinov V.M., Bondarenko T.V., Kochkin E.V. et al. Sposob izgotovleniya profilnykh diskov metodom goryachego izostaticheskogo pressovaniya [Method of shaped discs manufacturing by the hot isostatic pressing method]. Patent RU 2649188. Appl. 11.05.2016, publ. 30.03.2018. (In Russ.).
[16] Mozgov S.A., Saushkin B.P., Isachenko V.A. Technological method of improvement work turbopump assembly. Reshetnevskie chteniya [Reshetnev readings], 2014, vol. 1, pp. 417–418. EDN: SXZTHH (In Russ.).
[17] Smolentsev E.V. Proektirovanie elektricheskikh i kombinirovannykh metodov obrabotki [Design of electrical and combined machining methods]. Moscow, Mashinostroenie Publ., 2005. 510 p. (In Russ.).