An Analysis of Non-Destructive Methods for Thin Film Thickness Measurement
Authors: Shupenev A.E., Pankova N.S., Korshunov I.S., Grigoriyants A.G. | Published: 15.04.2019 |
Published in issue: #4(709)/2019 | |
Category: Mechanical Engineering and Machine Science | Chapter: Methods and Devices for Monitoring and Diagnosing Materials, Products, Substances | |
Keywords: thin film thickness, in situ methods, reflection high-energy electron diffraction, multiple-beam interferometry, gravimetric method |
The thickness of thin films determines the films’ unique properties, due to which they are widely used in optics and electronics. To measure the thickness of films in the range of 1 nm — 1 mcm during film deposition or on a finished product, it is important that non-destructive measurement methods should be used. An analysis of the most commonly used non-destructive methods for measuring and controlling the thickness of thin films is performed, with a possibility of in situ control of the technological process as well as for testing of finished products. This work describes theoretical and practical considerations of using reflection high-energy electron diffraction, piezoelectricity, interferometry and gravimetric methods for thin film thickness measurements. The results of the study can be used for selecting an optimal method of obtaining thin films when conducting theoretical and applied research.
References
[1] Minaychev V.E. Naneseniye plenok v vakuume [Film deposition in vacuum]. Moscow, Vysshaya shkola publ., 1989. 110 p.
[2] Kalyuzhnyy S.V. Slovar’ nanotekhnologicheskikh i svyazannykh s nanotekhnologiyami terminov [Glossary of nanotechnology and nanotechnology-related terms]. Moscow, Fizmatlit publ., 2010. 528 p.
[3] Nanotekhnologiya: fizika, protsessy, diagnostika, pribory [Nanotechnology: physics, processes, diagnostics, devices]. Ed. Luchinin V.V., Tairov Yu.M. Moscow, Fizmatlit publ., 2006. 552 p.
[4] Oura K., Lifshits V.G., Saranin A.A., Zotov A.V., Katayama M. Vvedeniye v fiziku poverkhnosti [Introduction to surface physics]. Moscow, Nauka publ., 2005. 499 p.
[5] Nanotekhnologii v poluprovodnikovoy elektronike [Nanotechnology in semiconductor electronics]. Ed. Aseyev A.L. Novosibirsk, Publishing House SB RAS publ., 2004. 368 p.
[6] Filatov D.O., Isakov M.A., Kruglova M.V. Fotoelektricheskiye svoystva nanostruktur GeSi/Si [Photoelectric properties of GeSi/Si nanostructures]. Nizhniy Novgorod, Lobachevsky University publ., 2010. 118 p.
[7] Gur’yanov G.M., Demidov V.N., Korneyeva N.P., Petrov V.N., Samsonenko Yu.B., Tsyrlin G.E. System for registration and analysis of fast electron reflection diffraction patterns. Zhurnal tekhnicheskoy fiziki, 1997, vol. 67, no. 8, pp. 111–116 (in Russ.).
[8] Braun W. Applied RHEED: reflection high-energy electron diffraction during crystal growth. Springer Science & Business Media, 1999, vol. 154, 217 p.
[9] Rost GaAs metodom MP·E. Rekonstruktsiya poverkhnosti, difraktsiya bystrykh otrazhennykh elektronov, ostsillyatsii DBOE [GaAs growth by the MBE method. Surface reconstruction, diffraction of fast reflected electrons, DBOE oscillations]. Sankt-Petersburg, SPbAU publ., 2010. 26 p.
[10] Cady W.G. Piezoelectricity. Vol. 2: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. New York, Dover Publications, 2018. 432 p.
[11] Janshoff A., Galla H.J., Steinem C. Piezoelectric mass‐sensing devices as biosensors – an alternative to optical biosensors? Angewandte Chemie International Edition, 2000, vol. 39, no. 22, pp. 4004–4032.
[12] Fredriksson C., Kihlman S., Rodahl M., Kasemo B. The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion. Langmuir, 1998, vol. 14, no. 2, pp. 248–251.
[13] Snow E.S., Campbell P.M. AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties. Science, 1995, vol. 270, no. 5242, pp. 1639–1641, doi: 10.1126/science.270.5242.1639
[14] Frey H. Handbook of thin film technology. Berlin, Springer, 2015, pp. 5–12.
[15] Handbook of Thin Film Technology. Ed. Meissel L., Glang R. New York, McGraw-Hill, 1970. (Russ. ed.: Tekhnologiya tonkikh plenok (spravochnik). Ed. Mayssel L., Gleng R. Moscow, Sovetskoye radio publ., 1977. 768 p.).
[16] Rozenberg G.V. Multibeam interferometry and interference light filters. Part II. Uspekhi fizicheskikh nauk, 1952, vol. XLVII, is. 2, pp. 173–257.
[17] Metfessel’ S. Tonkiye plenki, ikh izgotovleniye i izmereniye [Thin films, their manufacture and measurement]. Moscow, Leningrad, Gosenergoizdat publ., 1963. 272 p.
[18] Zimin S.P. Izmereniye parametrov plenochnykh struktur [Measurement of film structure parameters]. Yaroslavl, YSU publ., 2004. 36 p.
[19] Rozenbnrg G.V. Multibeam interferometry and interference light filters. Part I. Uspekhi fizicheskikh nauk, 1952, vol. XLVII, is. 1, pp. 3–50.
[20] Todua P.A. Metrology in nanotechnology. Nanotechnologies in Russia, 2007, vol. 2, no. 1–2, pp. 61–69 (in Russ.).
[21] Volkov А.V., Sanoyan A.G., Borodin S.A., Agafonov A.N. Oborudovaniye i metody kontrolya mikrorel’yefa difraktsionnykh opticheskikh elementov [Equipment and methods for mo-nitoring the microrelief of diffractive optical elements]. Samara, Samara University publ., 2007. 80 p.
[22] Rakhimov N.R., Ushakov O.K. Optoelektronnyye datchiki na osnove AFN-effekta [Optoelectronic sensors based on the AFN-effect]. Novosibirsk, SGUGIT publ., 2010. 218 p.
[23] Zherikhin A.N., Khudobenko A.I., Vill’yams R.T., Vilkinson D., User K.B., Khiong G., Voronov V.V. Laser deposition of ZnO films on silicon and sapphire substrates. Sovremennyye lazerno-informatsionnyye i lazernyye tekhnologii. Sbornik trudov. IPLIT RAN [Modern laser information and laser technologies. Collection of papers. IPLIT RAS]. Moscow, Interkontakt Nauka publ., 2005. 304 p.