Approach to controlling the surface crack height in products made of structural ceramics
Authors: Minin S.I., Rusin M.Yu., Terekhin A.V., Chulkov D.I., Filatov A.A. | Published: 04.02.2024 |
Published in issue: #2(767)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Methods and Devices for Monitoring and Diagnosing Materials, Products, Substances | |
Keywords: constructional ceramics, technological control, crack height, ultrasonic wave, diffraction of ultrasonic waves, the amplitude of the bottom signal |
Manufacture of products made of structural ceramics faces high probability of cracks formation leading to the product destruction even under the minor operation loads. In this regard, cracks in products made of structural ceramics are not allowed. Surface cracks could be removed at the stage of such products machining, and they are not rejected, if the crack height is lower than the machining depth. Therefore, in order to reduce the number of defects in manufacturing products of the ceramic materials, an important and urgent task is to develop a method for prompt non-destructive testing of the surface cracks height making it possible to obtain information and make a decision on possible mechanical modification of the ceramic product workpiece. The paper presents results of developing an ultrasonic method to determine the surface cracks height in products made of quartz ceramics and glass ceramics, which allows for technological control of the surface cracks height by the non-destructive method using a direct ultrasonic transducer with one-sided access to the test object surface.
EDN: BXXBQU
References
[1] Kharitonov D.V., Tychinskaya M.S., Anashkina A.A. et al. Keramicheskie materialy dlya aviatsii i kosmosa [Ceramic materials for aviation and space]. Moscow, RKhTU im. D.I. Mendeleeva Publ., 2022. 120 p. (In Russ.).
[2] Suzdaltsev E.I., Kharitonov D.V., Anashkina A.A. Analysis of existing radioparent refractory materials, composites and technology for creating high-speed rocket radomes. Part 1. Analysis of the level of property indices and limiting possibilities of radioparent inorganic refractory materials. Novye ogneupory, 2010, no. 6, pp. 45–49. (In Russ.). (Eng. version: Refract. Ind. Ceram., 2010, vol. 51, no. 3, pp. 202–205, doi: https://doi.org/10.1007/s11148-010-9289-2)
[3] Rusin M.Yu. Proektirovanie golovnykh obtekateley raket iz keramicheskikh i kompozitsionnykh materialov [Design of rocket head fairings from ceramic and composite materials]. Moscow, Bauman MSTU Publ., 2005. 63 p. (In Russ.).
[4] Rusin M.Yu., ed. Radioprozrachnye obtekateli letatelnykh apparatov [Radio-transparent fairings of aircraft.]. Kharkov, KhAI Publ., 2003. 239 p. (In Russ.).
[5] Ermolov I.N., Lange Yu.V. Nerazrushayushchiy kontrol. T. 3. Ultrazvukovoy control [Nondestructive control. Vol. 3. Ultrasonic control]. Moscow, Mashinostroenie Publ., 2004. 864 p. (In Russ.).
[6] Krautkremer Y., Krautkremer G. Ultrazvukovoy kontrol materialov [Ultrasonic control of materials]. Moscow, Metallurgiya Publ., 1991. 752 p. (In Russ.).
[7] Vybornov B.I. Ultrazvukovaya defektoskopiya [Ultrasonic defectoscopy]. Moscow, Metallurgiya Publ., 1985. 256 p. (In Russ.).
[8] Zatsepin A.F. Akusticheskiy control [Acoustic control]. Ekaterinburg, Izd-vo Ural. un-ta Publ., 2016. 211 p. (In Russ.).
[9] Vopilkin A.Kh. Difraktsionnye metody v ultrazvukovom nerazrushayushchem kontrole [Diffraction methods in ultrasonic nondestructive testing]. Moscow, Izd-vo NPO Priborprom Publ., 1989. 70 p. (In Russ.).
[10] Vopilkin A.Kh. Diffraction waves and their application in ultrasonic nondestructive testing. Defektoskopiya, 1985, no. 1, pp. 20–34; no. 2, pp. 72–85. (In Russ.).
[11] Borovikov V.A., Kinber B.E. Geometricheskaya teoriya difraktsii [Geometrical theory of diffraction]. Moscow, Svyaz Publ., 1978. 248 p. (In Russ.).
[12] Aleshin N.P. Fizicheskie osnovy akusticheskikh metodov kontrolya [Physical bases of acoustic methods of control]. Moscow, Izd-vo MVTU Publ., 1986. 44 p. p. (In Russ.).
[13] Aleshin N.P., Belyy V.E., Vopilkin A.Kh. et al. Metody akusticheskogo kontrolya metallov [Methods of acoustic inspection of metals]. Moscow, Mashinostroenie Publ., 1989. 456 p. (In Russ.).
[14] Minin S.I., Rusin M.Yu., Terekhin A.V. et al. Ultrazvukovoy sposob izmereniya vysoty vertikalno orientirovannykh ploskostnykh defektov v steklokeramicheskikh materialakh elementov konstruktsiy letatelnykh apparatov [Ultrasonic method for measuring the height of vertically oriented planar defects in glass-ceramic materials of aircraft structural elements]. Patent RU 2760487. Appl. 20.04.2021, publ. 25.11.2021. (In Russ.).