A Method for Calculating the Output Indicators of Turning
Authors: Grubyi S.V. | Published: 23.09.2019 |
Published in issue: #9(714)/2019 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: wear and tool life, cutting speed, cutting speed, depth, feed, speed of tool wear, cutting force, cutting temperature |
Rate of wear, tool life, cutting force and cutting temperature belong to output indicators of turning. To study and analyze these indicators, experimental studies are traditionally used, which require considerable material, financial and time resources. Reference literature and scientific publications contain power functions generalizing the results of experimental research on allowable cutting speeds, the main component of force and the torque. These functions reflect the limited conditions with regard to tool and workpiece materials and are true for tools without wear. A method for calculating the output indicators of turning is proposed based on the developed model. It establishes a mutual relationship with the cutting mode settings, geometrical parameters of the tool and the characteristics of hard alloy and machined material. The calculations are based on the equation of tool wear speed versus the cutting speed and the surface hardness of the tool material. The proposed method makes it possible to determine and analyze the output indicators without conducting labour intensive experimental studies. Experiments are used only for validation and refinement of the calculation results.
References
[1] Spravochnik tekhnologa-mashinostroitelya [Directory technologist-mechanical engineer]. Ed. Kosilova A.G., Meshcheryakov R.K. Vol. 2. Moscow, Mashinostroenie publ., 1985. 496 p.
[2] Gurevich Ya.L., Gorokhov M.V., Zakharov V.I. Rezhimy rezaniya trudnoobrabatyvaemykh materialov [Modes of cutting difficult materials]. Moscow, Mashinostroenie publ., 1986. 240 p.
[3] Tekhnologii obrabotki metallov rezaniem [Metal cutting technology]. Available at: http:// sandvik-coromant.tools (accessed 22 March 2019).
[4] Iscar’s Machining Power. Available at: http://mpwr.iscar.com/machiningpwr/ machiningpower.wgx?vwginstance=070a9b94ffde4c67b807949bbd458317 (accessed 15 December 2018).
[5] Walter Machining Calculator. Available at: https://www.walter-tools.com/ru-ru/press/media-portal/apps/overview/pages/default.aspx (accessed 05 December 2018).
[6] GARANT. Spravochnik po obrabotke rezaniem. [Handling Guide. Garant]. Available at: https://www.garant-tools.com/ (accessed 05 October 2018).
[7] Lorentzon J., Järvstråt N. Modelling tool wear in cemented-carbide machining alloy 718. International Journal of Machine Tools and Manufacture, 2008, vol. 48, iss. 10, pp. 1072–1080, doi: 10.1016/j.ijmachtools.2008.03.001
[8] Zanger F., Schulze V. Investigations on Mechanisms of Tool Wear in Machining of Ti-6Al-4V using FEM Simulation. Procedia CIRP, 2013, vol. 8, pp. 158–163, doi: 10.1016/ j.procir.2013.06.082
[9] Yen Y.-C., Söhner J., Lilly B., Altan T. Estimation of tool wear in orthogonal cutting using the finite element analysis. Journal of Materials Processing Technology, 2004, vol. 146, pp. 82–91, doi: 10.1016/S0924-0136(03)00847-1
[10] Filice L., Micari F., Settineri L., Umbrello D. Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools. Wear, 2007, vol. 262, pp. 545–554, doi: 10.1016/j.wear.2006.06.022
[11] Xie L.-J., Schmidt J., Schmidt C., Biesinger F. 2D FEM estimate of tool wear in turning operation. Wear, 2005, vol. 258, pp. 1479–1490, doi: 10.1016/j.wear.2004.11.004
[12] Kishawy H.A., Kannan S., Balazinski M. Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Annals — Manufacturing Technology, 2005, vol. 54 (1), pp. 55–58, doi: 10.1016/S0007-8506(07)60048-1
[13] Lim C.Y.H., Lim S.H., Lee K.S. Wear of TiC-coated carbide tools in dry turning. Wear, 1999, vol. 225–229, pp. 354–367, doi: 10.1016/S0043-1648(98)00366-4
[14] Astakhov V.P. The assessment of cutting tool wear. International Journal of Machine Tools and Manufacture, 2004, vol. 44, pp. 637–647, doi: 10.1016/j.ijmachtools.2003.11.006
[15] Filice L., Micari M., Settineri L., Umbrello D. Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools. Wear, 2007, vol. 262, pp. 545–554, doi: 10.1016/j.wear.2006.06.022
[16] Attanasio A., Ceretti E., Rizzuti S., Umbrello D., Micari F. 3D finite element analysis of tool wear in machining. CIRP Annals — Manufacturing Technology, 2008, vol. 57(1), pp. 61–64, doi: 10.1016/j.cirp.2008.03.123
[17] Grubyy S.V. Optimizatsiya protsessa mekhanicheskoy obrabotki i upravlenie rezhimnymi parametrami [Optimization of the machining process and control of regime parameters]. Moscow, Bauman Press, 2014. 149 p.
[18] Grubyy S.V. Modelirovaniye protsessa rezaniya tverdosplavnymi i almaz-nymi reztsami [Modeling of cutting process with carbide and diamond tools]. Moscow, Bauman Press, 2010. 107 p.