The Properties of Attracting Sets of Tool Deformation Displacements in the Trajectories of the Shape-Generating Movements in Turning
Authors: Zakovorotny V.L., Gvindzhiliya V.E. | Published: 09.03.2022 |
Published in issue: #3(744)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: dynamic cutting system, attracting sets of strain displacements, trajectories of the shape generating movements |
To date, there are many models of cutting forces as a function of deformations determining the dynamic relationship of the cutting process, which are based on experimental data, for example, on phase shifts between deformations and forces. However, a systematic study of the dynamic cutting system properties and the attracting sets of tool deformation displacements has not been carried out. The article considers system properties of the attracting set formation and proposes directions allowing their controlling. The cutting forces depending on deformations that form an intra system feedback, which can stabilize the equilibrium as well as contribute to the loss of its stability, were studied. The main results were obtained by mathematical modeling, and the methods of experimental dynamics were also used. Based on the results of the study, the conditions for self-excitation of the dynamic cutting system depending on the deformations in the direction of the cutting speed were determined. The obtained data on the mechanisms of formation and evolution of the attracting sets of tool deformation displacements during cutting allowed finding a new direction for increasing the cutting efficiency based on a constructive change in the elastic properties of the tool subsystem, its geometry and matching the CNC program with the dynamic properties of the cutting process.
References
[1] Hahn R.S. On the theory of regenerative chatter in precision grinding operation. Trans. ASME, 1954, vol. 76, pp. 356–260.
[2] Kudinov V.A. Dinamika stankov [Dynamics of machines]. Moscow, Mashinostroenie Publ., 1967. 359 p. (In Russ.).
[3] Veyts V.L., Vasil’kov D.V. Problems of dynamics, modelling and quality assurance at mechanical processing of low-rigidity blanks. STIN, 1999, no. 6, pp. 9–13. (In Russ.).
[4] Tlusty J., Polacek A., Danek C. et al. Selbsterregte Schwingungenan Werkzeugmaschinen. Berlin, VEB VerlagTechnik, 1962. 395 p.
[5] Tlusty J., Ismail F. Basic non-linearity in machining chatter. CIRP Ann., 1981, vol. 30, no. 1, pp. 299–304, doi: https://doi.org/10.1016/S0007-8506(07)60946-9
[6] Tobias S.A., Fishwick W. Theory of regenerative machine tool chatter. The Engineer, 1958, vol. 205, no. 7, pp. 199–203.
[7] Tobias S.A. Machine tool vibrations, London: Blackie, 1965. 351 p.
[8] Merrit H.E. Theory of self-excited machine-tool chatter-contribution to machine tool chatter research. J. Eng. Ind., 1965, vol. 87, no. 4, pp. 447–454. DOI: https://doi.org/10.1115/1.3670861
[9] Zharkov I.G. Vibratsii pri obrabotke lezviynym instrumentom [Vibrations at processing by an edge tool]. Leningrad, Mashinostroenie Publ., 1986. 184 p. (In Russ.).
[10] Gorodetskiy Yu.I. Theory of nonlinear oscillations and machine tool dynamics. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser. Matematicheskoe modelirovanie i optimal’noe upravlenie [Vestnik of Lobachevsky University of Nizhni Novgorod], 2001, no. 2, pp. 69–88. (In Russ.).
[11] Litak G. Chaotic vibrations in a regenerative cutting process. Chaos Solit. Fractals, 2002, vol. 13, no. 7, pp. 1531–1535, doi: https://doi.org/10.1016/S0960-0779(01)00176-X
[12] Namachchivaya N.S., Beddini R. Spindle speed variation for the suppression of regenerative chatter. J. Nonlinear Sci., 2003, vol. 13, no. 3, pp. 265–288, doi: https://doi.org/10.1007/s00332-003-0518-4
[13] Wahi P., Chatterjee A. Self-interrupted regenerative metal cutting in turning. Int. J. Non Linear Mech., 2008, vol. 43, no. 2, pp. 111–123, doi: https://doi.org/10.1016/j.ijnonlinmec.2007.10.010
[14] Warminski J., Litak G., Lipski J. et al. Chaotic vibrations in regenerative cutting process. In: IUT AM / IFToMM symposium on synthesis of nonlinear dynamical systems. Springer, 2000, pp. 275–284.
[15] Stepan G., Szalai R., Insperger T. Nonlinear dynamics of high-speed milling subjected to regenerative effect. In: Nonlinear dynamics of production systems, 2004, pp. 111–127, doi: https://doi.org/10.1002/3527602585.ch7
[16] Stepan G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes. Int. J. Bifurcat. Chaos, 2005, vol. 15, no. 9, pp. 2783–2798, doi: https://doi.org/10.1142/S0218127405013642
[17] Stepan G. Modelling nonlinear regenerative effects in metal cutting. Philos. Trans. A Math. Phys. Eng. Sci., 2001, vol. 359, no. 1781, pp. 739–757.
[18] Gouskov A.M., Voronov S.A., Paris H. et al. Nonlinear dynamics of a machining system with two interdependent delays. Commun. Nonlinear Sci. Numer. Simul., 2002, vol. 7, no. 4, pp. 207–221, doi: https://doi.org/10.1016/S1007-5704(02)00014-X
[19] Moradi H., Bakhtiari-Nejad F., Movahhedy M.R. et al. Nonlinear behavior of the regenerative chatter in turning process with a worn tool: forced oscillation and stability analysis. Mech. Mach. Theory, 2010, vol. 45, no. 8, pp. 1050–1066, doi: https://doi.org/10.1016/j.mechmachtheory.2010.03.014
[20] Gus’kov M., Din’ Dyk T., Panovko G. et al. Modeling and investigation of the stability of a multicutter turning process by a trace. Problemy mashinostroeniya i nadezhnosti mashin, 2018, no. 3, pp. 19–27, doi: https://doi.org/10.31857/S023571190000533-7 (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2018, vol. 47, no. 4, pp. 317–323, doi: https://doi.org/10.3103/S1052618818040052)
[21] Lapshin V.P. The influence of the cutting speed of metals on the regeneration of the vibratory oscillations of the tool in machines of the turning group. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) [Metal Working and Material Science], 2020, vol. 22, no. 1, c. 65–79. (In Russ.).
[22] Gouskov A., Gouskov M., Lorong Ph. et al. Influence of the clearance face on the condition of chatter self-excitation during turning. Int. J. Mach. Mach. Mater., 2017, vol. 19, no. 1, pp. 17–39.
[23] Zakovorotnyy V.L., Fam D.T., Bykador V.S. Self-organization and bifurcations of dynamical metal cutting system. Izvestiya vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika [Izvestiya VUZ. Applied Nonlinear Dynamics], 2014, vol. 22, no. 3, pp. 26–39, doi: https://doi.org/10.18500/0869-6632-2014-22-3-26-39 (in Russ.).
[24] Zakovorotny V.L., Gubanova A.A., Lukyanov A.D. Stability of shaping trajectories in milling: synergetic concepts. Russ. Engin. Res., 2016, vol. 36, no. 11, pp. 956–964, doi: https://doi.org/10.3103/S1068798X16110216
[25] Zakovorotny V.L., Gubanova A.A., Lukyanov A.D. Parametric self-excitation of a dynamic end-milling machine. Russ. Engin. Res., vol. 36, no. 12, pp. 1033–1039, doi: https://doi.org/10.3103/S1068798X16120194
[26] Zakovorotny V.L., Gvindzhiliya V.E. Influence of spindle wobble in a lathe on the tool’s deformational-displacement trajectory. Russ. Engin. Res., 2018, vol. 38, no. 8, pp. 623–631, doi: https://doi.org/10.3103/S1068798X1808018X
[27] Voronov S.A., Kiselev I.A. Nonlinear problems of cutting process dynamics. Mashinostroenie i inzhenernoe obrazovanie, 2017, no. 2, pp. 9–23. (In Russ.).
[28] Voronov S.A., Weidong Ma. Simulation of chip-formation by a single grain of pyramid shape. Vibroengineering Procedia, 2016, vol. 8, pp. 39–44.
[29] Ozturk E., Budak E. Modeling of 5-axis milling process. Mach. Sci. Technol., 2007, vol. 11, no. 3, pp. 287–311.
[30] Budak E., Ozturk E., Tunc L.T. Modeling and simulation of 5-axis milling processes. CIRP Ann. Manuf. Technol., 2009, vol. 58, no. 1, pp. 347–350, doi: https://doi.org/10.1016/j.cirp.2009.03.044
[31] Ozturk B., Lazoglu I. Machining of free-form surfaces. Part I: Analytical chip load. Int. J. Mach. Tools Manuf., 2006, vol. 46, no. 7-8, pp. 728–735, doi: https://doi.org/10.1016/j.ijmachtools.2005.07.038
[32] Bravo U. Stability limits of milling considering the ?exibility of the workpiece and the machine. Int. J. Mach. Tools Manuf., 2005, vol. 45, no. 15, pp. 1669–1680, doi: https://doi.org/10.1016/j.ijmachtools.2005.03.004
[33] Zakovorotnyy V.L., Gvindzhiliya V.E. Synergetic concept of software control of machining processes on metal-cutting machines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 5, pp. 24–36, doi: http://dx.doi.org/10.18698/0536-1044-2021-5-24-36 (in Russ.).
[34] Zakovorotnyy V.L., Gvindzhiliya V.E., Zakalyuzhnyy A.A. Influence of stiffness of the mechanical part of the drive and cutting parameters on the shaping elastic deformation control. Advanced Engineering Research, 2021, vol. 21, no. 2, pp. 154–162, doi: https://doi.org/10.23947/2687-1653-2021-21-2-154-162 (in Russ.).
[35] Agapov S.I. Hobbing of small-module gears in the presence of ultrasound. Vestnik mashinostroeniya, 2008, no. 4, pp. 66–68. (In Russ.). (Eng. version: Russ. Engin. Res., 2008, vol. 28, no. 4, pp. 343–345, doi: https://doi.org/10.3103/S1068798X08040138)
[36] Brzhozovskiy B.M. Ul’trazvukovye tekhnologicheskie protsessy i oborudovanie v mashino- i priborostroenii [Ultrasound technological processes and equipment in machine building and instrument making]. Saratov, Izd-vo SGTU Publ., 2009. 348 p. (In Russ.).
[37] Astashev V.K., Andrianov N.A., Krupenin V.L. On autoresonant ultrasonic cutting materials. Vestnik nauchno-tekhnicheskogo razvitiya, 2017, no. 1, pp. 3–16. (In Russ.).
[38] Ahmadi K., Savilov A. Modeling the mechanics and dynamics of arbitrary edge drills. Int. J. Mach. Tools Manuf., 2015, vol. 89, pp. 208–220, doi: https://doi.org/10.1016/j.ijmachtools.2014.11.012
[39] Altintas Y. Manufacturing automation. Vancouver, University of British Columbia, 2012. 366 r.
[40] Pirtini M., Lazoglu I. Forces and hole quality in drilling. Int. J. Mach. Tools Manuf., 2005, vol. 99, no. 11, pp. 1271–1281, doi: https://doi.org/10.1016/j.ijmachtools.2005.01.004
[41] Roukema J.C., Altintas Y. Generalizedmodeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation. Int. J. Mach. Tools Manuf., 2007, vol. 47, no. 9, pp. 1455–1473, doi: https://doi.org/10.1016/j.ijmachtools.2006.10.005
[42] Zhou Y., Yang W., Zhou Y. et al. Consistency evaluation of hole series surface quality using vibration signal. Int. J. Adv. Manuf. Technol., 2017, vol. 92, no. 1–4, pp. 1069–1079, doi: https://doi.org/10.1007/s00170-017-0184-6
[43] Kiselev I.A. Cutting process modelling geometric algorithm 3MZBL: working surface description approach. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2012, no. 6, doi: http://dx.doi.org/10.18698/2308-6033-2012-6-269 (in Russ.).
[44] Voronov S.A., Kiselev I.A. Cutting process modelling geometric algorithm 3MZBL: algorithm of surface modification and instantaneous chip thickness determination. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2012, no. 6, doi: http://dx.doi.org/10.18698/2308-6033-2012-6-261 (in Russ.).
[45] Voronov S.A., Kiselev I.A., Arshinov S.V. Dynamics’ numerical simulation application procedure of multi-axis die-milling at process design. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2012, no. 6, doi: http://dx.doi.org/10.18698/2308-6033-2012-6-260 (in Russ.).
[46] Ryzhkin A.A. Sinergetika iznashivaniya instrumental’nykh materialov pri lezviynoy obrabotke [Synergetics of tool materials wearing-out in a process of edge cutting machining]. Rostov-na-Donu, Donskoy gos. tekhn. un-t Publ., 2019. 289 p. (In Russ.).
[47] Zakovorotnyy V.L., Flek M.B. Dinamika protsessa rezaniya. Sinergeticheskiy podkhod [Cutting dynamics. Synergetic approcach]. Rostov-na-Donu, Terra Publ., 2006. 880 p. (In Russ.).
[48] Zakovorotnyy V.L., Fam D.T., Nguen S.T. Modeling of tool deformation offsetting to workpiece in turning. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2010, vol. 10, no. 7, pp. 1005–1015. (In Russ.).
[49] Lyapunov A.M. Obshchaya zadacha ob ustoychivosti dvizheniya [General problem of motion stability]. Moscow, Gostekhizdat Publ., 1950. 471 p. (In Russ.).
[50] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [Theory of automated control systems]. Moscow, Nauka Publ., 1972. 768 p. (In Russ.).
[51] Haken H. Information and self-organization. Elsevier, 2006. 251 p.
[52] Kolesnikov A.A. Prikladnaya sinergetika: osnovy sistemnogo sinteza [Applied synergetics: fundamentals of system synthesis]. Rostov-na-Donu, Izd-vo YuFU Publ., 2007. 384 p. (In Russ.).
[53] Push A.V. Shpindel’nye uzly. Kachestvo i nadezhnost’ [Spindle units. Quality and reliability]. Moscow, Mashinostroenie Publ., 1992. 288 p. (In Russ.).