Development of Polynomial Equations for Output Indicators of Turning
Authors: Grubyi S.V. | Published: 25.07.2022 |
Published in issue: #8(749)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: approximating the initial data, polynomial equations, operating parameters of turning, prefabricated cutter, tool wear rate, cutting force and temperature |
The article considers a technique for approximating significant initial data by polynomial equations for the output indicators of turning with prefabricated cutters.
Input variables — speed and depth of cut, feed, tool wear and lead angle — are included in the equation in a coded form. The output indicators include the tool wear rate, the force components and the cutting temperature. The initial data were obtained by calculation based on the analysis of the general tool wear model and contain more than 28,000 values for each indicator. The developed polynomial equations are designed for calculating or optimizing the operating parameters of turning extended surfaces with a complex profile. The algorithms used and similar polynomial differential equations are recommended for approximating the initial data for various types of mechanical processing.
References
[1] Bez’’yazychnyy V.F., Aver’yanov I.N., Kordyukov A.V. Raschet rezhimov rezaniya [Calculation of cutting regimes]. Rybinsk, RGATA Publ., 2009. 185 p. (In Russ.).
[2] Korotchenko A.G., Kumagina E.A., Smoryakova V.M. Vvedenie v mnogokriterial’nuyu optimizatsiyu [Introduction into multicriteria optimization]. Nizhniy Novgorod, NNGU Publ., 2017. 55 p. (In Russ.).
[3] Nogin V.D. Prinyatie resheniy pri mnogikh kriteriyakh [Multicriteria decision making]. Sankt-Petersburg, YuTAS Publ., 2007. 104 p. (In Russ.).
[4] Pestretsov S.I. Komp’yuternoe modelirovanie i optimizatsiya protsessov rezaniya [Computer modelling and optimization of cutting processes]. Tambov, Izd-vo TGTU Publ., 2009. 104 p. (In Russ.).
[5] Zaikin P.V., Pogorelovskiy M.A., Mikshina V.S. Approximation of experimental data functions by high order polynomial. Vestnik kibernetiki [Proceedings in Cybernetics], 2015, no. 4, pp. 129–134. (In Russ.).
[6] Shvedov A.S. Function approximation using neural networks and fuzzy systems. Problemy upravleniya [Control Sciences], 2018, no. 1, pp. 21–29. (In Russ.).
[7] Petryanin D.L., Yurkov N.K. Increasing the precision of approximation models. Nadezhnost’ i kachestvo slozhnykh system [Reliability & Quality of Complex Systems], 2016, no. 2, pp. 59–66. (In Russ.).
[8] Maslovskaya A.G. Approksimatsiya funktsiy v zadachakh obrabotki eksperimental’nykh dannykh [Function approximation in problems of experimental data processing]. Amurskiy gos. un-t Publ., 2021. 51 p. (In Russ.).
[9] Grubyy S.V. Raschet rezhimov rezaniya dlya operatsiy mekhanicheskoy obrabotki [Calculation of cutting regimes for operation of mechanical processing]. Moscow, Vologda, Infra–Inzheneriya Publ., 2021. 200 p. (In Russ.).
[10] Grubyy S.V. Modelirovanie protsessa rezaniya tverdosplavnymi i almaznymi reztsami [Modelling of cutting process with carbide and diamond cutters]. Moscow, Bauman MSTU Publ., 2010. 107 p. (In Russ.).
[11] Grubyy S.V. Optimizatsiya protsessa mekhanicheskoy obrabotki i upravlenie rezhimnymi parametrami [Optimization of mechanical treatment process and control on regime parameters]. Moscow, Bauman MSTU Publ., 2014. 149 p. (In Russ.).
[12] Borshova L.V., Pegashkin V.F., Mironova M.V. Optimizatsiya protsessa mekhanicheskoy obrabotki detaley slozhnogo profilya [Optimization of mechanical processing process of parts with complex profile]. Nizhniy Tagil, NTI Publ., 2019. 150 p. (In Russ.).