Effect of the Cutting Process on the Dynamic Properties of Machine Actuator Drives
Authors: Zakovorotny V.L., Fesenko M.A., Gvindzhiliya V.E. | Published: 09.09.2022 |
Published in issue: #9(750)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: controlled dynamic cutting system, actuator trajectories, motion decomposition principle, velocity coefficient matrix, elastic coefficient matrices |
Virtual cutting system simulations developed using mathematical modelling allow us to consider the relationship between the CNC program, machine actuator trajectories and elastic deformations, as well as the laws guiding trajectory transformation into output processing characteristics. The transformations of these trajectories are defined by a system of nonlinear higher-order differential equations that are difficult to analyse. Another related issue is the difficulty involved in determining the variation patterns in the actuator servomotor dynamics driven by the cutting process. The paper proposes a general approach to analysing a controlled dynamic cutting system based on the asymptotic properties of nonlinear differential equations containing small parameters for derivatives. We focus on drive properties being dynamically determined by their interaction with the cutting process. The paper presents drive properties as functions of elastic matrices pertaining to subsystems representing the tool and the workpiece interacting via the cutting process, said functions derived by mathematical simulation.
References
[1] Prigogine I., Stengers I. Order out of chaos. London, Heinemann, 1984. 349 p. (Russ. ed.: Poryadok iz khaosa. Moscow, Progress, 1986. 431 p.)
[2] Haken H. Advanced synergetics. Springer, 1983. 356 p. (Russ. ed.: Sinergetika. Ierarkhiya neustoychivostey v samoorganizuyushchikhsya sistemakh i ustroystvakh. Moscow, Mir Publ., 1985. 419 p.)
[3] Kolesnikov A.A. Sinergetika i problemy teorii upravleniya [Synergetics and problems of control theory]. Moscow, Fizmatlit Publ., 2004. 504 p. (In Russ.).
[4] Zakovorotnyy V.L., Flek M.B. Dinamika protsessa rezaniya. Sinergeticheskiy podkhod [Dynamics of cutting processes. Synergetic approach]. Rostov-na-Donu, Terra Publ., 2005. 876 p. (In Russ.).
[5] Zakovorotnyy V.L., Gvindzhiliya V.E. Synergetic concept of software control of machining processes on metal-cutting machines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 5, pp. 24–36, doi: http://dx.doi.org/10.18698/0536-1044-2021-5-24-36 (in Russ.).
[6] Zakovorotnyy V.L., Gvindzhiliya V.E. Synergetic approach to improve the efficiency of machining process control on metal-cutting machines. Obrabotka metallov. Tekhnologiya, oborudovanie, instrument [Metal Working and Material Science], 2021, pp. 23, no. 3, pp. 84–99, doi: https://doi.org/10.17212/1994-6309-2021-23.3-84-99 (in Russ.).
[7] Zakovorotny V., Gvindjiliya V. Process control synergetics for metal-cutting machines. J. Vibroengineering, 2022, vol. 24, no. 1, pp. 177–189, doi: https://doi.org/10.21595/jve.2021.22087
[8] Zakovorotnyy V.L. Nelineynaya tribomekhanika [Nonlinear tribomechanics]. Rostov-na-Donu, Izd-vo DGTU Publ., 2000. 293 p. (In Russ.).
[9] Zakovorotny V.L., Gvindjiliya V.E. Self-organization and evolution in dynamic friction systems. J. Vibroengineering, 2021, vol. 23, no. 6, pp. 1418–1432, doi: https://doi.org/10.21595/jve.2021.22033
[10] Kabaldin Yu.G., Shatagin D.A. Artificial intelligence and cyberphysical machining systems in digital production. Vestnik mashinostroeniya, 2020, no. 1, pp. 21–25. (In Russ.).
[11] Altintas Y., Kersting P., Biermann D. et al. Virtual process systems for part machining operations. CIRP Annals, 2014, vol. 63, no. 2, pp. 585–605, doi: https://doi.org/10.1016/j.cirp.2014.05.007
[12] Pantyukhin O.V., Vasin S.A. Digital double of the technological process of manufacturing special-purpose products. Stankoinstrument, 2021, no. 1, pp. 56–59, doi: https://doi.org/10.22184/2499-9407.2021.22.1.56.58 (in Russ.).
[13] ltintas Y., Brecher C., Weck M. et al. Virtual machine tool. CIRP Annals, 2005, vol. 54, no. 2, pp. 115–138, doi: https://doi.org/10.1016/S0007-8506(07)60022-5
[14] Erkorkmaz K., Altintas Y., Yeung C-H. Virtual computer numerical control system. CIRP Annals, 2006, vol. 55, no. 1, pp. 399–402, doi: https://doi.org/10.1016/S0007-8506(07)60022-5
[15] Kilic Z.M., Altintas Y. Generalized mechanics and dynamics of metal cutting operations for unified simulations. Int. J. Mach. Tools Manuf., 2016, vol. 104, pp. 1–13, doi: https://doi.org/10.1016/j.ijmachtools.2016.01.006
[16] Estman L., Merdol D., Brask K.G. et al. Development of machining strategies for aerospace components, using virtual machining tools. In: New production technologies in aerospace industry. Springer, 2014, pp. 63–68.
[17] Soori M., Arezoo B., Habibi M. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines. J. Manuf. Syst., 2014, vol. 33, no. 4, pp. 498–507, doi: https://doi.org/10.1016/j.jmsy.2014.04.007
[18] Duvedi R.K., Bedi S., Batish A. et al. A multipoint method for 5-axis machining of triangulated surface models. Comput. Aided Des., 2014, vol. 52, pp. 17–26, doi: https://doi.org/10.1016/j.cad.2014.02.008
[19] Gan W.F., Fu J.Z., Shen H.Y. et al. Five-axis tool path generation in CNC machining of T-spline surfaces. Comput. Aided Des., 2014, vol. 52, pp. 51–63, doi: https://doi.org/10.1016/j.cad.2014.02.013
[20] Kiswanto G., Hendriko H., Duc E. An analytical method for obtaining cutter workpiece engagement during a semi-finish in five-axis milling. Comput. Aided Des., 2014, vol. 55, pp. 81–93, doi: https://doi.org/10.1016/j.cad.2014.05.003
[21] Wu D., Rosen D.W., Wang L. et al. Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Comput. Aided Des., 2015, vol. 59, pp. 1–14, doi: https://doi.org/10.1016/j.cad.2014.07.006
[22] Tobias S.A. Machine tool vibration. London, Blackie, 1965. 180 p.
[23] Kudinov V.A. Dinamika stankov [Dynamics of machines]. Moscow, Mashinostroenie Publ., 1967. 359 p. (In Russ.).
[24] Tlusty J., Polacek A., Danek C. et al. Selbsterregte Schwingungenan Werkzeugmaschinen. Berlin, VEB VerlagTechnik, 1962. 425 p.
[25] Merrit H.E. Theory of self-excited machine-tool chatter-contribution to machine tool chatter research. J. Eng. Ind., 1965, vol. 87, no. 4, pp. 447–454, doi: https://doi.org/10.1115/1.3670861
[26] Altitias Y. Analytical prediction of three dimensional chatter stability in milling. JSME Int. J. Ser. C, 2001, vol. 44, no. 3, pp. 717–723, doi: https://doi.org/10.1299/jsmec.44.717
[27] Gouskov A., Gouskov M., Lorong Ph. et al. Influence of the clearance face on the condition of chatter self-excitation during turning. Int. J. Mach. Mach. Mater., 2017, vol. 19, no. 1, pp. 17–39.
[28] Gus’kov M., Din’ Dyk T., Panovko G. et al. Modeling and investigation of the stability of a multicutter turning process by a trace. Problemy mashinostroeniya i nadezhnosti mashin, 2018, no. 3, pp. 19–27, doi: https://doi.org/10.31857/S023571190000533-7 (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2018, vol. 47, no. 4, pp. 317–323, doi: https://doi.org/10.3103/S1052618818040052)
[29] Zakovorotnyy V.L., Fam D.T., Fam T.Kh. Parametrical phenomena under on-machine process control. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2012, pp. 12, no. 7, pp. 52–61. (In Russ.).
[30] Zakovorotnyy V.L., Fam D.T., Nguen S.T. et al. Dynamic coupling modeling formed by turning in cutting dynamics problems (positional coupling). Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2011, vol. 11, no. 2, pp. 137–146. (In Russ.).
[31] Zakovorotnyy V.L., Fam D.T., Nguen S.T. et al. Dynamic coupling modeling formed by turning in cutting dynamics problems (positional coupling). Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2011, vol. 11, no. 3, pp. 301–311. (In Russ.).
[32] Pontryagin L.S. Izbrannye trudy. T. 2 [Selected works. Vol. 2]. Moscow, Nauka Publ., 1988. 551 p. (In Russ.).
[33] Tikhonov A.N. Systems of differential equations containing small parameters in the derivatives. Matematicheskiy sbornik, 1952, vol. 31, no. 3, pp. 575–586. (In Russ.).