Tool and workpiece deformation effect in the cutting speed direction on the machining dynamics
Authors: Zakovorotny V.L., Gvindzhiliya V.E., Kislov K.V., Veremeev D.N. | Published: 10.08.2023 |
Published in issue: #8(761)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: dynamic cutting system, regenerative self-excitation, trajectory stability, attracting set bifurcation |
Numerous studies were devoted to studying the dynamic cutting system considered in combination of the tool and the workpiece sub-systems interacting through a dynamic connection formed by the machining process. Dynamic coupling is simulated by the cutting forces represented in the system state coordinates, which determines the system properties. Several models were proposed to describe the dynamic connection reflecting various experimentally observed effects and contributing to the self-excitation. Regenerative effect of the tool trace left on the workpiece at the previous revolution was considered. The regenerative effect was studied on the basis of assumption that the retarding argument in the forces description was remaining unchanged. The paper studies the regenerative effect influence on dynamic properties of the cutting process taking into account (unlike the known works) the retarded argument dependence on the tool deformation displacement. This could fundamentally change properties of the system under consideration in the unity of stability and the attracted formed deformation displacement sets (limit cycles, invariant tori and chaotic attractors). Results of the mathematical simulation are presented taking into account the regenerative self-excitation, where the retarded argument is the state coordinates function. Bifurcation diagrams of attracting sets of the deformation displacements are considered, and conditions for formation of their superlow-frequency components of the complex spatial-temporal structure are discussed. Research results are aimed at determining the machining conditions based on requirements for ensuring the specified quality of parts manufacturing using the longitudinal turning example.
References
[1] Hahn R.S. On the theory of regenerative chatter in precision-grinding operations. Trans. ASME, 1954, vol. 76, no. 4, pp. 593–597, doi: https://doi.org/10.1115/1.4014908
[2] [Tobias S.A., Fishwick W. Theory of regenerative machine tool chatter. The Engineer, 1958, vol. 205, no. 7, pp. 199–203.
[3] Sokolovskiy A.P. Vibratsii pri rabote na metallorezhushchikh stankakh [Vibrations at work on metal-cutting machines]. V: Issledovanie kolebaniy pri rezanii metallov [In: Investigation of vibrations at metal cuttinoscow]. Moscow, Mashgiz Publ., 1958, pp. 15–18. (In Russ.).
[4] Tobias S.A. Machine tool vibrations. Blackie, 1965. 351 p.
[5] Merrit H.E. Theory of self-excited machine-tool chatter-contribution to machine tool chatter research. J. Eng. Ind., 1965, vol. 87, no. 4, pp. 447–454, doi: https://doi.org/10.1115/1.3670861
[6] Kudinov V.A. Dinamika stankov [Machine dynamics]. Moscow, Mashinostroenie Publ., 1967. 359 p. (In Russ.).
[7] Danek O., Špaček L., Berthold H. et al. Selbsterregte Schwingungen an Werkzeugmaschinen. VEB Verlag Technik, 1962. 431 p.
[8] Zakovorotnyy V.L. The study of the dynamic characteristic of cutting at autoscillations of the tool. Izvestiya Severo-Kavkazskogo nauchnogo tsentra vysshey shkoly. Tekhnicheskie nauki, 1976, no. 2, pp. 37–41. (In Russ.).
[9] Zakovorotnyy V.L., Begun V.G., Palagnyuk G.G. Frequency analysis of the dynamics of the cutting process. Izvestiya Severo-Kavkazskogo nauchnogo tsentra vysshey shkoly. Tekhnicheskie nauki, 1979, no. 1, pp. 24–27. (In Russ.).
[10] Tlusty J., Ismail F. Basic non-linearity in machining chatter. CIRP Annals, 1981, vol. 30, no. 1, pp. 299–304, doi: https://doi.org/10.1016/S0007-8506(07)60946-9
[11] Zharkov I.G. Vibratsii pri obrabotke lezviynym instrumentom [Vibrations during machining with blade tool]. Leningrad, Mashinostroenie Publ., 1986. 180 p. (In Russ.).
[12] Elyasberg M.E. Avtokolebaniya metallorezhushchikh stankov [Autoscillations of metal-cutting machines]. Sankt-Petersburg, OKBS Publ., 1993. 182 p. (In Russ.).
[13] Veyts V.L., Vasilkov D.V. Problems of dynamics, modeling and quality assurance in machining of low-rigid workpieces. STIN, 1999, no. 6, pp. 9–13. (In Russ.).
[14] Altitias Y., Budak E. Analytical prediction of stability lobes in milling. CIRP Annals, 1995, vol. 44, no. 1, pp. 357–362, doi: https://doi.org/10.1016/S0007-8506(07)62342-7
[15] Altitias Y., Weck M. Chatter stability of metal cutting and grinding. CIRP Annals, 2004, vol. 53, no. 2, pp. 619–642, doi: https://doi.org/10.1016/S0007-8506(07)60032-8
[16] Altitias Y. Analytical prediction of three dimensional chatter stability in milling. JSME Int. J. Ser. C, 2001, vol. 44, no. 3, pp. 717–723, doi: https://doi.org/10.1299/jsmec.44.717
[17] Gorodetskiy Yu.I. Theory of nonlinear oscillations and machine tool dynamics. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2001, no. 2, pp. 69–88. (In Russ.).
[18] Vasin L.A., Vasin S.A., Kosheleva A.A. Emergent approach to creation of vibration-proof cutting tools. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2014, no. 11–2, pp. 377–385. (In Russ.).
[19] Insperger T., Stepan G. Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng., 2002, vol. 55, no. 5, pp. 503–518, doi: https://doi.org/10.1002/nme.505
[20] Zakovorotny V. Vifurcations in the dynamic system of the mechanic processing in metal–cutting tools. WSEAS Transactions on Applied and Theoretical Mechanics, 2015, vol. 10, pp. 102–116.
[21] Zakovorotny V.L., Lukyanov A.D., Gubanova A.A. et al. Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting. J. Sound Vib., 2016, vol. 368, pp. 174–190, doi: https://doi.org/10.1016/j.jsv.2016.01.020
[22] Hanna N.H., Tobias S.A. Theory of nonlinear regenerative chatter. J. Eng. Ind., 1974, vol. 96, no. 1, pp. 247–255, doi: https://doi.org/10.1115/1.3438305
[23] Gouskov A.M., Voronov S.A., Paris H. et al. Nonlinear dynamics of a machining system with two interdependent delays. Commun. Nonlinear Sci. Numer. Simul., 2002, vol. 7, no. 4, pp. 207–221, doi: https://doi.org/10.1016/S1007-5704(02)00014-X
[24] Litak G. Chaotic vibrations in a regenerative cutting process. Chaos, Solitons & Fractals, 2002, no. 13, no. 7, pp. 1531–1535, doi: https://doi.org/10.1016/S0960-0779(01)00176-X
[25] Namachchivaya N.S., Beddini R. Spindle speed variation for the suppression of regenerative chatter. J. Nonlinear Sci., 2003, no. 13, no. 3, pp. 265–288, doi: https://doi.org/10.1007/s00332-003-0518-4
[26] Wahi P., Chatterjee A. Self-interrupted regenerative metal cutting in turning. Int. J. Non Linear Mech., 2008, vol. 43, no. 2, pp. 111–123, doi: https://doi.org/10.1016/j.ijnonlinmec.2007.10.010
[27] Warminski J., Litak G., Lipski J. et al. Chaotic vibrations in regenerative cutting process. IUT AM IFToMM Symposium on Synthesis of Nonlinear Dynamical Systems. Springer, 2000, vol. 73, pp. 275–284, doi: https://doi.org/10.1007/978-94-011-4229-8_29
[28] Stepan G., Szalai R., Insperger T. Nonlinear dynamics of high–speed milling subjected to regenerative effect. In: Nonlinear dynamics of production systems. Wiley, 2004, pp. 111–127.
[29] Stepan G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes. Int. J. Bifurcat. Chaos, 2005, vol. 15, no. 9, pp. 2783–2798, doi: https://doi.org/10.1142/S0218127405013642
[30] Stepan G. Modelling nonlinear regenerative e?ects in metal cutting. Philos. Trans. Royal Soc. A, 2001, vol. 359, no. 1781, pp. 739–757, doi: https://doi.org/10.1098/rsta.2000.0753
[31] Reith M.J., Bachrathy D., Stepan G. Improving the stability of multi–cutter turning with detuned dynamics. Mach. Sci. Technol., 2016, vol. 20, no. 3, pp. 440–459, doi: https://doi.org/10.1080/10910344.2016.1191029
[32] Brissaud D., Gouskov A., Guibert N. et al. Influence of the ploughing effect on the dynamic behavior of the self–vibratory drilling head. CIRP Annals, 2008, vol. 57, no. 1, pp. 385–388, doi: https://doi.org/10.1016/j.cirp.2008.03.101
[33] Gouskov A., Gouskov M., Lorong Ph. et al. Influence of flank face on the condition of chatter self–excitation during turning. Int. J. Mach. Mach. Mater., 2017, vol. 19, no. 1, pp. 17–40, doi: https://doi.org/10.1504/IJMMM.2017.081186
[34] Voronov S.A., Kiselev I.A. Nonlinear problems of cutting process dynamics. Mashinostroenie i inzhenernoe obrazovanie [Mechanical Engineering and Engineering Education], 2017, no. 2, pp. 9–23. (In Russ.).
[35] Guskov M., Din Dyk T., Panovko G. Et al. Modeling and investigation of the stability of a multicutter turning process by a trace. Problemy mashinostroeniya i nadezhnosti mashin, 2018, no. 3, pp. 19–27, doi: https://doi.org/10.31857/S023571190000533-7 (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2018, vol. 47, no. 4, pp. 317–323, doi: https://doi.org/10.3103/S1052618818040052)
[36] Murashkin L.S., Murashkin S.L. Prikladnaya nelineynaya mekhanika stankov [Applied nonlinear mechanics of machines]. Leningrad, Mashinostroenie Publ., 1977. 192 p. (In Russ.).
[37] Rusinek R., Wiercigroch M., Wahi P. Influence of tool flank forces on complex dynamics of cutting process. Int. J. Bifurcat. Chaos, 2014, vol. 24, no. 9, art. 1450115, doi: https://doi.org/10.1142/S0218127414501156
[38] Rusinek R., Wiercigroch M., Wahi P. Modelling of frictional chatter in metal cutting. Int. J. Mech. Sci., 2014, vol. 89, pp. 167–176, doi: https://doi.org/10.1016/j.ijmecsci.2014.08.020
[39] nGrabec I. Chaos generated by the cutting process. Phys. Lett. A, 1986, vol. 117, no. 8, pp. 384–386, doi: https://doi.org/10.1016/0375-9601(86)90003-4
[40] Wiercigroch M., Budak E. Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos. Trans. Royal Soc. A, 2001, vol. 359, no. 1781, pp. 663–693, doi: https://doi.org/10.1098/rsta.2000.0750
[41] Wiercigroch M., Krivtsov A.M. Frictional chatter in orthogonal metal cutting. Philos. Trans. Royal Soc. A, 2001, vol. 359, no. 1781, pp. 713–738, doi: https://doi.org/10.1098/rsta.2000.0752
[42] Ariaratnam S.T., Fofana M.S. The effects of nonlinearity in turning operation. J. Eng. Math., 2002, vol. 42, no. 2, pp. 143–156, doi: https://doi.org/10.1023/A:1015203721926
[43] Rusinek R., Wiercigroch M., Wahi P. Influence of tool flank forces on complex dynamics of a cutting process. Int. J. Bifurcat. Chaos, 2014, vol. 24, no. 9, pp. 189–201, doi: https://doi.org/10.1142/S0218127414501156
[44] Zakovorotny V.L., Gubanova A.A., Lukyanov A.D. Attractive manifolds in end milling. Russ. Engin. Res., 2017, vol. 37, no. 2, pp. 158–163, doi: https://doi.org/10.3103/S1068798X17020198
[45] Zakovorotnyi V.L., Bykador V.S. Sutting-system dynamics. Russ. Engin. Res., 2016, vol. 36, no. 7, pp. 591–598, doi: https://doi.org/10.3103/S1068798X16070182
[46] Zakovorotnyy V.L., Fam D.T., Fam T.Kh. Parametrical phenomena under on-machine process control. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2012, vol. 12, no. 7, pp. 52–61. (In Russ.).
[47] Zakovorotnyy V.L., Fam T.Kh. Parametric self-excitation of cutting dynamic system. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2013, vol. 13, no. 5–6, pp. 97–103. (In Russ.).
[48] Masoumi F., Pellicano F.S., Samani M. Et al. Symmetry breaking and chaos–induced imbalance in planetary gears. Nonlinear Dyn., 2015, vol. 80, 1–2, pp. 561–582, doi: https://doi.org/10.1007/s11071-014-1890-3
[49] Zakovorotnyy V.L., Fam D.T., Nguen S.T. Mathematical modeling and parametric identification of dynamic properties of the subsystems of the cutting tool and workpiece in the turning. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences], 2011, no. 2, pp. 38–46. (In Russ.).
[50] Magnitskiy N.A., Sidorov S.V. Novye metody khaoticheskoy dinamiki [New methods of chaotic mechanics]. Moscow, Editorial URSS Publ., 2004. 318 p. (In Russ.).
[51] Lyapunov A.M. Obshchaya zadacha ob ustoychivosti dvizheniya [Main problem of motion stability]. Moscow, Gostekhizdat Publ., 1950. 471 p. (In Russ.).
[52] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [Theory of automated regulation systems]. Moscow, Nauka Publ., 1975. 768 p. (In Russ.).