Hardening methods influence on fatigue strength of the compressor blades with stress concentrators
Authors: Shiryaev А.А., Milenin A.S. | Published: 12.09.2024 |
Published in issue: #9(774)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: laser shock peening, increasing the fatigue limit, compressor blades, low-plasticity smoothing, effective stress concentration factor, blade fracture study |
The paper analyzes the influence of different hardening methods on fatigue strength of the gas turbine engine compressor blades made of titanium alloy with stress concentrators. The 5 mm wide blade feather edge zones were hardened using the laser shock peening (LSP, LSPwC) and low-plasticity smoothing methods. The solid-state Nd:YAG laser was used to harden the blades on both sides by the LSP method. The 80 ?m thick aluminum foil was used as the protective layer. Low-plasticity smoothing was performed using a hydrostatic tool on the CNC machine. Endurance limits were determined for blades without hardening (serial) and with hardening, as well as for blades of both groups with applied stress concentrators (damage imitation) such as a nick of different depth on the leading edge. The paper states that the blade leading edge machining by different hardening methods reduces the effective stress concentration factor by 1.2–2.0 times relative to that of blades without hardening. Fracture analysis after hardening shows that the hardened layer depth could be 0.6…1.0 mm. Destruction after hardening becomes sublayer, the crack development source coincides with the zones merger boundary during hardening on both sides. The paper shows that nicks about 0.5 mm deep almost do not reduce fatigue properties of the hardened blades in the stress concentration zone. Introduction of the laser shock peening would reduce the number of blade stripping and premature removal of the gas turbine engine.
EDN: QTMYIH, https://elibrary/qtmyih
References
[1] Inozemtsev A.A., Nikhamkin M.A., Sandratskiy V.L. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok. T. 2. Kompressory. Kamery sgoraniya. Forsazhnye kamery. Turbiny. Vykhodnye ustroystva [Fundamentals of design of aircraft engines and power plants. Vol. 2. Compressors. Combustion chambers. Afterburner chambers. Turbines. Output devices]. Moscow, Mashinostroenie Publ., 2008. 366 p. (In Russ.).
[2] Nepein K.G., Selivanov I.A. Improving the fatigue resistance characteristics of compressor blades made of titanium alloy. Vestnik PNIPU. Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering Bulletin], 2019, no. 57, pp. 129–136, doi: https://doi.org/10.15593/2224-9982/2019.57.10 (in Russ.).
[3] Aleksandrov I.M., Milyaev K.E., Semenov S.V. et al. Application of technology of low plasticity burnishing in heightening of reability of fan blades possibility analysis. Vestnik PNIPU. Aerokosmicheskaya tekhnika [PNRPU Aerospace Engineering Bulletin], 2018, no. 53, pp. 86–96, doi: https://doi.org/10.15593/2224-9982/2018.53.08 (in Russ.).
[4] Zhang Q., Ye Y., Yang Y. et al. Review of low-plasticity burnishing and its applications. Adv. Eng. Mater., 2022, no. 24, no. 11, art. 2200365, doi: https://doi.org/10.1002/adem.202200365
[5] Mahajan D., Tajane R. A review on ball burnishing process. Int. J. Sci. Res. Publ., 2013, vol. 3, no. 4. URL: http://www.ijsrp.org/research-paper-0413.php?rp=P161004
[6] Dzierwa A. Influence of ball-burnishing process on surface topography parameters and tribological properties of hardened steel. Machines, 2019, vol. 7, no. 1, art. 11, doi: https://doi.org/10.3390/machines7010011
[7] Ivanov Yu.F., Rygina M.E., Petrikova E.A. et al. Structure and mechanical properties of hypereutectic silumin irradiated by a pulsed electron beam. Vestnik MAI [Aerospace MAI Journal], 2021, vol. 28, no. 2, pp. 216–222, doi: https://doi.org/10.34759/vst-2021-2-216-223 (in Russ.).
[8] Kochubey A.A., Vernigorov Yu.M., Demin G.V. Physico-technological basics of aircraft long parts hardening in the devices with rotating magnetic field. Vestnik MAI [Aerospace MAI Journal], 2020, vol. 27, no. 1, pp. 201–216, doi: https://doi.org/10.34759/vst-2020-1-201-216 (in Russ.).
[9] Instrumentalnye tekhnologii uluchsheniya metallicheskikh poverkhnostey [Tool technologies for improvement of metal surfaces]. rp-ural.ru: website. URL: https://www.rp-ural.ru/wp-content/uploads/2021/05/Ecoroll_RU.pdf (accessed: 13.12.2023). (In Russ.).
[10] Surface treatment services. lambdatechs.com: website. URL: https://www.lambdatechs.com/surface-treatment-services/ (accessed: 13.12.2023)
[11] Lavrys S.M., Pohrelyuk I.M., Lukyanenko A.G. Fatigue limit of two-phase titanium alloy after surface deformation-diffusion treatment. JOM, 2023, vol. 75, no. 4, pp. 1251–1260, doi: https://doi.org/10.1007/s11837-022-05659-5
[12] Rotella G. Roller burnishing of Ti6Al4V under different cooling/lubrication conditions and tool design: effects on surface integrity. Int. J. Adv. Manuf. Technol., 2020, vol. 106, no. 2, pp. 431–440, doi: https://doi.org/10.1007/s00170-019-04631-z
[13] Velazquez-Corral E., Wagner V., Jerez-Mesa R. et al. Wear resistance and friction analysis of Ti6Al4V cylindrical ball-burnished specimens with and without vibration assistance. The Int. J. Adv. Manuf. Technol., 2023, doi: https://doi.org/10.1007/s00170-023-10919-y
[14] Jerez-Mesa R., Travieso-Rodríguez J.A., Landon Y. et al. Comprehensive analysis of surface integrity modification of ball-end milled Ti-6Al-4V surfaces through vibration-assisted ball burnishing. J. Mater. Process. Technol., 2019, no. 267, pp. 230–240, doi: https://doi.org/10.1016/j.jmatprotec.2018.12.022
[15] Novikov I.A., Nozhnitskiy Yu.A., Shibaev S.A. International experience in research and application of the technological process of laser shock peening of metals (review). Aviatsionnye dvigateli [Aviation Engines], 2022, no. 2, pp. 59–82, doi: https://doi.org/10.54349/26586061_2022_1_59 (in Russ.).
[16] Gachetova E.A., Sikhamov R., Fentske F. et al. Influence of laser shock peening on low- and high-cycle fatigue of an ot4-0 titanium alloy. Prikladnaya mekhanika i tekhnicheskaya fizika, 2022, vol. 63, no. 2, pp. 182–191, doi: https://doi.org/10.15372/PMTF20220217 (in Russ.). (Eng. version: J. Appl. Mech. Tech. Phy., 2022, vol. 63, no. 2, pp. 335–342, doi: https://doi.org/10.1134/S0021894422020171)
[17] Shiryaev A.A., Gabov I.G., Milenin A.S. et al. Comparison of hardening methods on blades of titanium alloy. Vestnik PNIPU. Mashinostroenie, materialovedenie [Bulletin of PNRPU. Mechanical engineering, materials science], 2023, no. 4, pp. 109–117. (In Russ.).
[18] Kalainathan S., Prabhakaran S. Recent development and future perspectives of low energy laser shock peening. Opt. Laser Technol., 2016, no. 81-A, pp. 137–144, doi: https://doi.org/10.1016/j.optlastec.2016.02.007
[19] Jiao Y., He W., Shen X. Enhanced high cycle fatigue resistance of Ti-17 titanium alloy after multiple laser peening without coating. Int. J. Adv. Manuf. Technol., 2019, vol. 101, no. 5–8, pp. 1333–1343, doi: https://doi.org/10.1007/s00170-018-3006-6
[20] Sundar R., Ganesh P., Gupta R.K. et al. Laser shock peening and its applications: a review. Lasers Manuf. Mater. Process., 2019, vol. 6, no. 7, pp. 424–463, doi: https://doi.org/10.1007/s40516-019-00098-8
[21] Qutaba S., Asmelash M., Saptaji K. et al. A review on peening processes and its effect on surfaces. Int. J. Adv. Manuf. Technol., 2022, vol. 120, no. 7–8, pp. 4233–4270, doi: https://doi.org/10.1007/s00170-022-09021-6
[22] Liao Y., Ye C., Cheng G.Y. A review: warm laser shock peening and related laser processing technique. Opt. Laser Technol., 2016, no. 81-A, pp. 15–24, doi: https://doi.org/10.1016/j.optlastec.2015.09.014
[23] Lin C., Wu H., Li Z. et al. Evaluation of oblique laser shock peening effect of FGH95 superalloy turbine disk material. Mater. Today Commun., 2022, vol. 31, art. 103534, doi: https://doi.org/10.1016/j.mtcomm.2022.103534
[24] Lyakhovetskiy M.A., Korolev D.D., Kozhevnikov G.D. et al. [Laser shock hardening of titanium alloy BT6 with aluminium ablative coating]. Bystrozakalennye materialy i pokrytiya. Mat. XVIII Mezhd. nauch.-tekh. konf. [Rapidly hardened materials and coatings. Proc. XVIII Int. Sci.-Tech. Conf.]. Moscow, Probel-2000 Publ., 2021, pp. 258–263. (In Russ.).
[25] Chen C., Zhang X., Yan X. et al. Effect of laser shock peening on combined low? and high?cycle fatigue life of casting and forging turbine blades. J. Iron Steel Res. Int., 2018, vol. 25, no. 1, pp. 108–119, doi: https://doi.org/10.1007/s42243-017-0013-z
[26] Zo Y.M. Udarnaya obrabotka tsvetnykh metallov i splavov malomoshchnymi lazernymi istochnikami [Shock treatment of non-ferrous metals and alloys by low-power laser sources]. Moscow, Bauman MSTU Publ., 2020. 16 p. (In Russ.).
[27] Shiryaev A.A., Milenin A.S., Tairov D.F. [Influence of hardering methods on the endurance limit on blades of titanium alloy]. AKTTI-2023, 2023, pp. 229–300. (In Russ.).
[28] Kogaev V.P., Gusenkov A.P., eds. Raschety na prochnost pri napryazheniyakh, peremennykh vo vremeni [Strength calculations at stresses variable in time]. Moscow, Mashinostroenie Publ., 1993. 364 p. (In Russ.).