Some Features of Non-Conservative Stability Problems of Mechanical Systems
Authors: Radin V.P., Chirkov V.P., Shchugorev A.V., Shchugorev V.N. | Published: 04.09.2018 |
Published in issue: #8(701)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Theory of Mechanisms and Machines | |
Keywords: three-link pendulum, equilibrium position, non-conservative loading, stability loss criteria, boundaries of divergence and flutter |
Using a three-link pendulum loaded by a tracking and potential force, the stability of the rectilinear equilibrium form of the system is thoroughly examined. Using the Routh-Hurwitz criterion, the conditions of static (divergence) and dynamic (flutter) types of loss of stability are formulated. It is shown that small and equal in value partial damping coefficients have virtually no effect on the position of the flutter boundary. Examples are given of the alternation of boundaries corresponding to different types of stability loss. Examples are also provided to illustrate the fact that in some cases with a monotonous increase in the tracking force, both the loss of stability and the stabilization of the equilibrium position are possible.
References
[1] Nikolai E.L. Trudy po mehanike [Works on the mechanics]. Moscow, Gostehizdat publ., 1955, pp. 357–406.
[2] Bolotin V.V. Nekonservativnye zadachi teorii uprugoi ustoichivosti [Nonconservative problems of elastic stability theory]. Moscow, Fizmatgiz publ., 1961. 339 p.
[3] Feodos’ev V.I. Izbrannye zadachi i voprosy po soprotivleniiu materialov [Selected problems and questions in strength of materials]. Moscow, Nauka publ., 1973. 400 p.
[4] Modern problem of structural stability. Ed. Seyranian A.P., Elishakoff I. New York, Wien, Springer-Verlag, 2002. 394 p.
[5] Elishakoff I. Resolution of the 20th century conundrum in elastic stability. Florida Atlantic University, 2014. 334 p.
[6] Kagan-Rozentsveig L.M. Voprosy nekonservativnoi teorii ustoichivosti [Questions of the neo-conservative stability theory]. Sankt-Petersburg, SPbGASU publ., 2014. 174 p.
[7] Tsigler G. Osnovy teorii ustoichivosti konstruktsii [Fundamentals of structural stability theory]. Moscow, Mir publ., 1971. 192 p.
[8] Luongo A., D’Annibale F. On the destabilizing effect of damping on discrete and continuous circulatory systems. Journal of Sound and Vibration, 2014, vol. 333(24), pp. 6723–6741.
[9] Tommasini M., Kirillov O.N., Misseroni D., Bigoni D. The destabilizing effect of external damping: singular flutter boundary for the Pflüger column with vanishing external dissipation. Journal of the Mechanics and Physics of Solids, 2016, vol. 91, pp. 204–215.
[10] Luongo A., Dannibale F. On the destabilizing effect of damping on discrete and continuous circulatory systems. Journal of Sound and Vibration, 2014, vol. 333(24), pp. 6723–6741.
[11] Elishakoff I. Controversy associated with the so-called «follower forces»: critical overview. Applied Mechanics Reviews, 2005, vol. 58, pp. 117–142.
[12] Lagozinskii S.A., Sokolov A.I., Svetlitskogo V.A., red., Naraikina O.S. Ustoichivost’ priamolineinykh sterzhnei, nagruzhennykh slediashchimi salami [Straight-line stability of the rods loaded by tracking forces]. Problemy prikladnoi mekhaniki, dinamiki i prochnosti mashin. Sb. statei [Problems of applied mechanics, dynamics and strength of machines. Collected papers]. Moscow, Bauman Press, 2005, pp. 244–259
[13] Shvartsman B.S. Large deflections of a cantilever beam subjected to a follower force. Journal of Sound and Vibration, 2007, vol. 304 (3–5), pp. 969–973.
[14] Ivanova A.I. Ob ustoichivosti polozheniia ravnovesiia trekhzvennogo maiatnika pod deistviem slediashchei sily [On Stability of Equilibrium Position of Three-link Pendulum under Follower Force]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences]. 2004, no. 3, pp. 19–25.
[15] Baikov A.E., Maiorov A.Iu. Ob ustoichivosti polozheniia ravnovesiia diskretnoi modeli zapravochnogo shlanga pod deistviem reaktivnoi sily [On the equilibrium position stability of discrete model of filling hose under the action of reactive force]. Nelineinaia dinamika [Russian Journal of Nonlinear Dynamics]. 2015, vol. 11, no. 1, pp. 127–146.