Development of heat transfer calculation methods based on the similarity criterion of deposit formation with the electrochemical number
Authors: Altunin K.V. | Published: 16.11.2022 |
Published in issue: #12(753)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Heat Engines | |
Keywords: sedimentation similarity criterion, saline deposit, electrochemical number, heat transfer calculation method |
A similarity criterion of deposit formation with the electrochemical number was developed. Experimental studies of the saline deposits effect on heat transfer were generalized, and a new criterion equation was obtained for conditions of the saline solution natural convection. The modernized criterion of sedimentation similarity served as the basis for heat transfer calculation during the deposits formation.
References
[1] Balaban-Irmenin Yu.V., Boglovskiy A.V., Vasina L.G. et al. Regularities of scale formation in water heating equipment of heat supply systems (review). Energosberezhenie i vodopodgotovka, 2004, vol. 30, no. 3, pp. 10–16. (In Russ.).
[2] Chauhan K., Sharma P., Chauhan Gh.S. Removal/dissolution of mineral scale deposits. In: Mineral scales and deposits. Elsevier, 2015, pp. 701–720.
[3] Vasilyeva L.V. Formirovanie elementnogo i fazovogo sostava otlozheniy v teploenergeticheskom oborudovanii v usloviyakh razlichnykh skhem vodopodgotovki i sposoby ikh udaleniya. Diss. kand. khim. nauk [Formation of elemental and phase composition of deposits in thermal power equipment at different water treatment schemes and methods of their removal. Kand. chem. sci. diss.]. Krasnodar, KGU Publ., 2017. 136 p. (In Russ.).
[4] Melnikov M.V., Korepanov M.A., Kalinin A.S. Electromagnetic water treatment for the limescale protection. Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 389–395. (In Russ.).
[5] Koltsa L.N., Elistratova Yu.V., Seminenko A.S. Effect of hardness salt deposits on heat output of radiators. Sovremennye naukoemkie tekhnologii [Modern High Technologies], 2014, no. 7–2, pp. 58–59. (In Russ.).
[6] Galkovskiy V.A., Chupova M.V. Analysis of the reduction in the heat transfer coefficient of heat exchangers due to surface contamination. Naukovedenie, 2017, vol. 9, no. 2. URL: http://naukovedenie.ru/PDF/41TVN217.pdf (in Russ.).
[7] Minko V.A., Feoktistov A.Yu., Gunko I.V. et al. Methods and effectiveness of measures to combat scale formation in heating systems. Vestnik BGTU im. V.G. Shukhova, 2015, no. 2, pp. 16–19. (In Russ.).
[8] Bublikov I.A. Nauchnye printsipy diagnostirovaniya i razrabotka metodov snizheniya intensivnosti obrazovaniya otlozheniy v teploobmennom oborudovanii teplovykh i atomnykh elektrostantsiy. Diss. ... dok. tekh. nauk [Scientific principles of diagnosis and development of methods to reduce the intensity of deposit formation in heat exchange equipment of thermal and nuclear power plants. Doc. tech. sci. diss.]. Novocherkassk, YuRGPU (NPI) Publ. 2004. 360 p. (In Russ.).
[9] Glushchenkov V.A., Karpukhin V.F., Yusupov R.Yu. et al. Technology and equipment for removal of salt depositions from tubes. Zapiski Gornogo instituta [Journal of Mining Institute], 2005, vol. 166, pp. 172–174. (In Russ.).
[10] Cengel Y.A. Heat transfer. McGraw-Hill. 2003. 932 p.
[11] Altunin K.V. Creation of new similarity numbers of heat transfer. Innovatsionnye nauchnye issledovaniya [Innovative Scientific Research], 2022, no. 5–2(19), pp. 27–34. (In Russ.).
[12] Altunin K.V. Development of the techniques for calculating heat transfer during sedimentation. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 7, pp. 42–48, doi: http://dx.doi.org/10.18698/0536-1044-2022-7-42-48 (in Russ.).
[13] Altunin K.V. Development of calculation methods of heat transfer under influence of deposit formation and electric convection in a medium of kerosene. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2022, vol. 14, no. 7, pp. 325–334, doi: https://doi.org/10.34759/tpt-2022-14-7-325-334 (in Russ.).
[14] Nechaev A.V. Osnovy elektrokhimii [Fundamentals of electrochemistry]. Ekaterinburg, UrFU Publ. 2010. 107 p. (In Russ.).
[15] Damaskin B.B., Petriy O.A., Tsirli G.A. Elektrokhimiya [Electrochemistry]. Moscow, Khimiya Publ., Kolosc. 2006. 672 p. (In Russ.).
[16] Bulidorova G.V., Galyametdinov Yu.G., Yaroshevskaya Kh.M. et al. Fizicheskaya khimiya [Physical chemistry]. Moscow, KDU Publ., Universitetskaya kniga Publ. 2016. 456 p. (In Russ.).