Computational study of the diesel fuel ignition dose effecting the gas-diesel engine operation process
Authors: Kuleshov A.S., Markov V.A., Furman V.V., Plakhov S.V. | Published: 14.12.2022 |
Published in issue: #12(753)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Heat Engines | |
Keywords: gas engine, gas-diesel engine, petroleum diesel fuel, natural gas, electronic fuel supply control system, fuel efficiency indicators |
Relevance of the article is determined by the need to replace petroleum diesel fuel with motor fuels obtained from the alternative raw materials. Natural gas is considered as the promising alternative fuel. Using the DIESEL-RK software package, computational studies were made of the diesel fuel ignition dose effect on the operation process of the 6 ChN 31.8/33 locomotive gas-diesel engine. The engine diesel and its gas-diesel cycles with the ignition dose of diesel fuel equal to 5, 10, 15 and 20% were determined. Differences in the efficiency values ??of the diesel engine under study with alteration in the diesel fuel ignition dose were not exceeding 2.7%. Diesel engine conversion to the gas-diesel cycle made it possible to significantly reduce the smoke from exhaust gases (to 90%), as well as the specific mass emissions with the exhaust gases of nitrogen oxides (to 18%) and carbon dioxide (to 23%). Expediency of changing the diesel fuel ignition dose of a gas-diesel engine with alteration in the speed and load modes of its operation was noted.
References
[1] Aleksandrov A.A., Markov V.A., eds. Al’ternativnye topliva dlya dvigateley vnutrennego sgoraniya [Alternative fuels for internal combustion engines]. Moscow, Inzhener Publ., Oniko-M Publ., 2012. 791 p. (In Russ.).
[2] Erokhov V.I. Environmental indicators of modern land vehicles. Gruzovik [Truck], 2020, no. 9, pp. 16–27. (In Russ.).
[3] Dolganov K.E., Verbovskiy V.S., Kovalev S.A. et al. Study on fuel efficiency and gas diesel exhaust toxicity. Dvigatelestroenie, 1991, no. 8-9, pp. 6–9. (In Russ.).
[4] Piskunov I.V., Glagoleva O.F., Golubeva I.A. Alternative fuels for sustainable development of the transport sector. Part 1. Gas engine fuel. Gazomotornoe toplivo. Transport na al’ternativnom toplive [Autogas Filling Complex+Alternative Fuel], 2021, no. 4, pp. 68–77. (In Russ.).
[5] Gayvoronskiy A.I., Markov V.A., Ilatovskiy Yu.V. Ispol’zovanie prirodnogo gaza i drugikh al’ternativnykh topliv v dizel’nykh dvigatelyakh [Using natural gas and other alternative fuels in diesel engines]. Moscow, IRTs Gazprom Publ., 2007. 480 p. (In Russ.).
[6] Druzhinin P.V., Kartukov A.G., Volokushin R.V. Analysis and prospects of using alternative motor fuels in road transport. Avtogazozapravochnyy kompleks + al’ternativnoe toplivo [Autogas Filling Complex+Alternative Fuel], 2020, vol. 19, no. 10, pp. 467–472. (In Russ.).
[7] Dolganov K.E. Automotive gas engines. Dvigatelestroenie, 1995, no. 1, pp. 6–10. (In Russ.).
[8] Fofanov G.A., Grigorovich D.N., Nestrakhov A.S. Al’ternativnye vidy topliva na podvizhnom sostave zheleznodorozhnogo transporta [Alternative fuels on a rolling stock of railway transoprt]. Moscow, Intekst Publ., 2008. 144 p. (In Russ.).
[9] Vatolin D.S. LNG as a fuel for marine reciprocating engines. Dvigatelestroenie, 2020, no. 3, pp. 28–34. (In Russ.).
[10] Galyshev Yu.V., Magidovich L.E., Koreshonkov N.A. et al. Prospect and problems of shifting marine diesel on gas fuel. Dvigatelestroenie, 1998, no. 1, pp. 8–9. (In Russ.).
[11] Galyshev Yu.V. Dual-fuel marine engine: concept and development. Dvigatelestroenie, 2006, no. 1, pp. 10–14. (In Russ.).
[12] Likhanov V.A., Saykin A.M. Snizhenie toksichnosti avtotraktornykh dizeley [Lowering toxicity of automotive diesel engines]. Moscow, Kolos Publ., 1994. 224 p. (In Russ.).
[13] Aniskin V.I. Technology introduction in agriculture technics production working on compressed natural gas. Avtogazozapravochnyy kompleks + al’ternativnoe toplivo [Autogas Filling Complex+Alternative Fuel], 2005, no. 1, pp. 17–18. (In Russ.).
[14] Lupachev P.D., Filimonov A.I. Gas and gas-diesel tractors: advantages and disadvantages. Traktory i sel’khozmashiny [Tractors and Agricultural Machinery], 1998, no. 6, pp. 28–30. (In Russ.).
[15] Savel’yev G.S., Kochetkov M.N., Ovchinnikov E.V. Efficiency of gas motor fuel for agricultural machinery. Sel’skokhozyaystvennye mashiny i tekhnologii [Agricultural Machinery and Technologies], 2015, no. 1, pp. 12–15. (In Russ.).
[16] Markov V.A., Gayvoronskiy A.I., Grekhov L.V. et al. Rabota dizeley na netraditsionnykh toplivakh [Work of diesels on non-conventional fuels]. Moscow, Legion-Avtodata Publ., 2008. 464 p. (In Russ.).
[17] Bukreev G.A., Nizhnik M.E. Primenenie razlichnykh gazov v kachestve topliva dlya DVS. Dvigateli vnutrennego sgoraniya. Ser. 4, vyp. 4 [Using different gases as a fuel for combustion engines. Combustion engines. Ser. 4, iss. 4.]. Moscow, TsNIITEItyazhmash Publ., 1991. 36 p. (In Russ.).
[18] Nizhnik M.E., Vezhenkov I.V. Gazovyy dvigatel’ 12 GChN 18/20 [12 GChN 18/20 gas engine]. V: Sb. trudov TsNIDI [In: Proceeding TsNIDI]. Leningrad, TsNIDI Publ., 1985, pp. 136–142. (In Russ.).
[19] Vinogradov L.V., Gorbunov V.V., Patrakhal’tsev N.N. et al. Primenenie gazovykh topliv v dvigatelyakh vnutrennego sgoraniya [Application of gas fuels in combustion engines]. Moscow, IRTs Gazprom Publ., 1996. 186 p. (In Russ.).
[20] Ryspanov N.B. Calculating-experimental investigation of the primer fuel dose effect on the liquid gas engine operation. Dvigatelestroenie, 1991, no. 6, pp. 7–8. (In Russ.).
[21] Kuleshov A.S., Grekhov L.V. Computational shaping of optimum law for diesel control on traditional and alternative fuels. Bezopasnost’ v tekhnosfere, 2007, no. 5, pp. 30–32. (In Russ.).
[22] Kuleshov A.S. Model for predicting air-fuel mixing, combustion and emissions in di diesel engines over whole operating range. SAE Tech. Pap., 2005, no. 2005-01-2119, doi: https://doi.org/10.4271/2005-01-2119
[23] Kuleshov A.S. Multi-zone DI diesel spray combustion model and its application for matching the injector design with piston bowl shape. SAE Tech. Pap., 2007, no. 2007-01-1908, doi: https://doi.org/10.4271/2007-01-1908
[24] Shekhovtsov A.F., red., Razleytsev N.F. et al. Protsessy v perspektivnykh dizelyakh [Processes in prospective diesels]. Khar’kov, Osnova Publ., 1992. 352 p. (In Russ.).
[25] Kuleshov A., Mahkamov Kh., Kozlov A. et al. Simulation of dual-fuel diesel combustion with multi-zone fuel spray combustion model. ASME ICEF2014-5700, 2014, paper ICEF2014-5700, V002T06A020, doi: https://doi.org/10.1115/ICEF2014-5700
[26] Kuleshov A., Grekhov L. Multidimensional optimization of DI diesel engine process using multi-zone fuel spray combustion model and detailed chemistry NOx formation model. SAE Tech. Pap., 2016, no. 2013-01-0882, doi: https://doi.org/10.4271/2013-01-0882
[27] Kuleshov A.S. Razvitie metodov rascheta i optimizatsiya rabochikh protsessov DVS. Diss. dok. tekh. nauk [Development of calculation methods and optimization of combustion engine working processes. Kand. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2011. 235 c.
[28] Razleytsev V.N. Modelirovanie i optimizatsiya protsessa sgoraniya v dizelyakh [Modelling and optimization of combustion process in diesels]. Khar’kov, Vishcha shkola Publ., 1980. 169 p. (In Russ.).
[29] Hiroysu Y., Arai M. Structures of fuel sprays in diesel engines. SAE Tech. Pap., 1990, no. 900475, doi: https://doi.org/10.4271/900475
[30] Hiroysu Y., Kadota T., Arai M. Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions. Part 1. Combustion modeling. Bull. JSME, 1983, vol. 26, no. 214, pp. 562–568, doi: https://doi.org/10.1299/jsme1958.26.562
[31] Grekhov L.V., Ivashchenko N.A., Markov V.A. Sistemy toplivopodachi i upravleniya dizeley [Fuel-delivery and control system of diesels]. Moscow, Legion-Avtodata Publ., 2005. 344 p. (In Russ.).
[32] Markov V.A., Furman V.V., Loboda S.S. Calculation research of functional process of diesel engine with electronic control system for fuel supply. Gruzovik [Truck], 2015, no. 10, pp. 28–33. (In Russ.).
[33] Markov V.A., Trifonov V.L., Markova I.G. et al. Calculating study of the diesel engine working process. Gruzovik [Truck], 2020, no. 10, pp. 9–16. (In Russ.).
[34] Markov V.A., Kuleshov A.S., Neverov V.A. et al. Improvement of fuel atomization and mixing processes in engines firing mixed biofuels. Dvigatelestroenie, 2021, no. 1, pp. 3–12. (In Russ.).
[35] Ohashi I., Kazuo N., Koichi H. New marine gas engine development in YANMAR. CIMAC Congress, 2016, paper 49.
[36] Umierski M., Stommel P. Fuel efficient natural gas engine with common-rail micro-pilot injection. SAE Tech. Pap., 2000, no. 2000-01-3080, doi: https://doi.org/10.4271/2000-01-3080
[37] Senghaas S. New injector family for high-pressure gas and low-caloric liquid fuels. CIMAC Congress, 2019, paper 119.
[38] Kuo T.W., Bracco F.V. On the scaling of transient laminar, turbulent and spray jets. SAE Tech. Pap., 1982, no. 820038, doi: https://doi.org/10.4271/820038
[39] Lyshevskiy A.S. Raspylivanie topliva v sudovykh dizelyakh [Fuel spreading in marine diesel]. Leningrad, Sudostroenie Publ., 1971. 248 p. (In Russ.).
[40] Livengood J.C., Wu P.C. Correlation of autoignition phenomena in internal combustion engines and rapid compression machines. 5th Int. Symp. on Combustion, 1955, vol. 5, no. 1, pp. 347–356, doi: https://doi.org/10.1016/S0082-0784(55)80047-1
[41] Kozlov A., Grinev V., Terenchenko A. et al. An investigation of the effect of fuel supply parameters on combustion process of the heavy-duty dual-fuel diesel ignited gas engine. Energies, 2019, vol. 12, no. 12, art. 2280, doi: https://doi.org/10.3390/en12122280
[42] Kubesh J.T., Podnar D.J., Guglielmo K.H. et al. Development of an electronically-controlled natural gas-fueled John Deere power Tech 8.1 L engine. SAE Tech. Pap., 1995, paper 951940, doi: https://doi.org/10.1016/S0082-0784(55)80047-1