Development of a Technique for Filling Pneumatic Automation Device Chambers During Pneumatic Vacuum Tests
Authors: Aliev A.R. | Published: 23.02.2022 |
Published in issue: #3(744)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Hydraulic Machines and Hydropneumatic Units | |
Keywords: gas filling technique, pneumatic vacuum tests, leak tests, filling the chamber with gas, automation of the process |
The article considers an automated system for filling the pneumatic automatic device working chambers with gas during leak tests. A new algorithm for the filling process is proposed allowing significant reduction of the duration of tests by increasing the intensity of heat exchange. The processes of filling the working chamber with gas according to the standard and developed algorithms are compared. It has been found that the proposed algorithm, when checking the tightness of the product, provides a significant reduction in the time of filling the chamber with gas, excluding significant fluctuations in the gas temperature and stresses inside the product material.
References
[1] Veselkov V.V., Rydlovskiy V.P., Shtayts V.V. Advancement of leakages testing technology for testing reactor containments of new atomic vessels. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova, 2018, vol. 10, no. 2, pp. 346–355, doi: https://doi.org/10.21821/2309-5180-2018-10-2-346-355 (in Russ.).
[2] Chubar’ A.V., Pastushenko O.V., Kolchanov I.P. Prospects of improvement of descriptions of tent-bed test for control of impermeability of systems of space vehicles of connection. Zhurnal Sibirskogo federal’nogo universiteta. Tekhnika i tekhnologii [Journal of Siberian Federal University. Engineering and Technologies], 2014, no. 7, pp. 811–820. (In Russ.).
[3] Kishkin A.A., Kolchanov I.P., Delkov A.V., et al. The problem of increasing the sensitivity of local control methods for tightness products of rocket and space technology. Vestnik SibGAU im. akademika M.F. Reshetneva, 2014, no. 1, pp. 127–133. (In Russ.).
[4] Belyakov I.T., Zernov I.A., eds. Tekhnologiya sborki i ispytaniy kosmicheskikh apparatov [Assembly and test technology of spacecraft]. Moscow, Mashinostroenie Publ., 1990. 352 p. (In Russ.).
[5] Kholodkov N.V., ed. Eksperimental’naya otrabotka kosmicheskikh letatel’nykh apparatov [Experimental adjustment of spacecraft]. Moscow, Izd-vo MAI Publ., 1994. 412 p. (In Russ.).
[6] Gardymov G.P., Parfenov B.A., Pchelintsev A.V. Tekhnologiya raketostroeniya [Rocket-building technology]. Sankt-Petersburg, Spetsial’naya literatura Publ., 1997. 320 p. (In Russ.).
[7] Makarov Yu.N., Sokolov Yu.A. Innovatsionnaya deyatel’nost’ raketno-kosmicheskoy otrasli v chasti resheniya tekhnologicheskikh problem obespecheniya kachestva, nadezhnosti i bezopasnosti perspektivnykh izdeliy raketno-kosmicheskoy tekhniki [Innovative activity in rocket-space field in soving technological problems of quality, reliability and safety of advanced rocket-space technics]. Moscow, NII ENTsITEKh Publ., 2015. 411 p. (In Russ.).
[8] Baryshnikov V.I., Rozanov L.N., Sokolov A.N., et al. Mass- spectrometric hermiticity control of large objects using method of test material leakage. Vakuumnaya tekhnika i tekhnologiya, 2019, no. 2, pp. 47–51. (In Russ.).
[9] Rozinov A.Ya. Comparative analysis of the control methods technological indicators of the metalware tightness. Tekhnologiya mashinostroeniya, 2019, no. 8, pp. 46–51. (In Russ.).
[10] Khamits I.I., Filippov I.M., Burylov L.S., et al. Large transformable structures for advanced manned complexes. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2016, no. 2, pp. 23–33. (In Russ.).
[11] Mikrin E.A. Outlook for our country’s manned spaceflight development (to mark the 110th anniversary of S.P. Korolev). Kosmicheskaya tekhnika i tekhnologiya [Space Technique and Technologies], 2017, no. 1, pp. 5–11. (In Russ.).
[12] Mikrin E.A. Scientific and engineering problems involved in the implementation of the project "Manned space systems and complexes". Kosmicheskaya tekhnika i tekhnologiya [Space Technique and Technologies], 2019, no. 3, pp. 5–19. (In Russ.).
[13] Khamits I.I., Pozdnyakov S.S., Filippov I.M., et al. Tests of a mockup of a transformable module for space and planetary stations. Kosmicheskaya tekhnika i tekhnologiya [Space Technique and Technologies], 2020, no. 1, pp. 60–70, doi: https://doi.org/10.33950/spacetech-2308-7625-2020-1-60-70 (in Russ.).
[14] Gorgidze A.D., Lipnyak L.V., Ol’shanskiy V.A., et al. Sposob kontrolya germetichnosti izdeliy [Method of testing articles for tightness]. Patent SU 1840701. Appl. 28.12.1978, publ. 10.12.2008. (In Russ.).
[15] Lipnyak L.V., Panov N.G., Popov A.D. Sposob kontrolya germetichnosti izdeliy [Method of testing articles for tightness]. Patent RU 2016385. Appl. 19.07.1991, publ. 15.07.1994. (In Russ.).
[16] Zyablov V.A., Napitukhin L.E., Shcherbakov E.V. Sposob ispytaniy izdeliy na germetichnost’ [Method of testing articles for tightness]. Patent RU 2194260. Appl. 17.01.2001, publ. 10.12.2002. (In Russ.).
[17] Gorgidze A.D., Lipnyak L.V., Ol’shanskiy V.A., et al. Sposob kontrolya germetichnosti izdeliy, rabotayushchikh pod davleniem [Method for hermiticity control of parts working under pressure]. Patent SU 1772639. Appl. 30.06.1978, publ. 30.10.1992. (In Russ.).
[18] Shcherbakov E.V., Lipnyak L.V. Sposob kontrolya germetichnosti izdeliy [Method of testing articles for tightness]. Patent SU 1837173. Appl. 19.05.1980, publ. 30.08.1993. (In Russ.).
[19] Aliev A.R. [Analysis of requirements to vacuum-tight thin-walled shells of aircraft parts]. Sb. st. Vseros. nauch.-tekh. i nauch.-metod. konf. s mezhdunarodnym uchastiem Gidropnevmoavtomatika i gidroprivod [Proc. Russ. Sci.-tech. Sci.-Pract. Conf. with Int. Anticipation Hydraulic and Pneumatic Control Systems and Hydraulic Drive]. Kovrov, KGTA im. V.A. Degtyareva Publ., 2020, pp. 79–93. (In Russ.).
[20] Zyablov V.A., Oksov I.A., Troynikov V.I., et al. Sposob izmereniya stepeni summarnoy germetichnosti mnogopolostnogo izdeliya [Measurement technique for grade of summarized tightness of multicavity items]. Patent RU 2712762. Appl. 20.03.2019, publ. 31.01.2020. (In Russ.).
[21] Troynikov V.I., Shcherbakov E.V. Sposob opredeleniya negermetichnosti izdeliy, rabotayushchikh pod vneshnim i vnutrennim izbytochnym davleniem [Method of determining leakage of articles operating under external pressure and internal excess pressure]. Patent RU 2716474. Appl. 25.05.2019, publ. 11.03.2020. (In Russ.).
[22] Troynikov V.I., Shcherbakov E.V. Sposob ispytaniy izdeliy na summarnuyu germetichnost’ [Method of testing products on total leakage]. Patent 2654340. Appl. 28.11.2016, publ. 17.05.2018.
[23] Moiseev V.A., Tarasov V.A., Kolmykov V.A., et al. Tekhnologiya proizvodstva zhidkostnykh raketnykh dvigateley [Production technology for liquid rocket engines]. Moscow, Bauman MSTU Publ., 2008. 380 p. (In Russ.).
[24] Aliev A.R. [Design analysis of thin-walled rocket-space technique parts under vacuum leak test]. Sb. mat. i dok. XXIV Mezhd. nauch.-tekh. konf. studentov i aspirantov Gidravlicheskie mashiny, gidroprivody i gidropnevmoavtomatika [Proc. XXIV Int. Sci.-Tech. Conf. Students and Postgraduates Hydraullic Machines, Drives and Hydraulic and Pneumatic Control Systems]. Moscow, Mir nauki Publ., 2020, pp. 33–44. (In Russ.).
[25] Aliev A.R., Timofeev Yu.M., Khalatov E.M. Simplified analysis procedure of parameters for filling the chambers of rocket and space engineering products during pneumovacuum tests. Kontrol’. Diagnostika [Testing. Diagnostics], 2018, no. 6, pp. 28–33, doi: https://doi.org/10.14489/td.2018.06.pp.028-033 (in Russ.).
[26] Cohen J.P. Method and system for temperature-controlled gas dispensing. Patent US 20140311622. Appl. 04.22.2013, publ. 10.23.2014. (In Russ.).
[27] Hoath S.D. Methods and apparatus for leak testing. Patent JP 2008008910-A. Appl. 04.09.2007, publ. 17.01.2008. (In Russ.).
[28] Gulyaev A.I. Sposob napolneniya sosuda szhatym gazom [Method for filling a container with pressurized gas]. Patent SU 744186. Appl. 13.12.1977, publ. 30.06.1980. (In Russ.).
[29] Aliev A.R., Khalatov E.M. Raising efficiency of air leak test for aircraft by automation of producing control mixes. Molodezhnyy nauchno-tekhnicheskiy vestnik, 2015, no. 9. URL: http://ainsnt.ru/doc/801746.html (in Russ.).
[30] Anikeychik N.D., Antropov O.A., Baranov L.T., et al. Teoriya i praktika ekspluatatsii ob’’ektov kosmicheskoy infrastruktury. T. 1. Ob’’ekty kosmicheskoy infrastruktury [Theory and practice of exploiting objects of space infrastructure. Vol. 1. Objects of space infrastructure]. Sankt-Petersburg, BKhV-Peterburg Publ., 2006. 400 p. (In Russ.).
[31] Wu X., Liu J., Shao J., et al. Fast filling strategy of type III on-board hydrogen tank based on time-delayed method. Int. J. Hydrog. Energy, 2021, vol. 46, no. 57, pp. 29288–29296, doi: https://doi.org/10.1016/j.ijhydene.2021.01.094
[32] Dicken C.J.B., Merida W. Modeling the transient temperature distribution within a hydrogen cylinder during refueling. Numer. Heat Tr. A-Appl., 2007, vol. 53, no. 7, doi: https://doi.org/10.1080/10407780701634383
[33] Arzumanov Yu.L., Khalatov E.M., Chekmazov V.I. Osnovy proektirovaniya sistem pnevmo- i gidroavtomatiki [Design basics for systems of pneumatic and hydraulic automation]. Moscow, Spektr Publ., 2017. 459 p. (In Russ.).
[34] Arzumanov Yu.L., Khalatov E.M., Chekmazov V.I., Chukanov K.P. Osnovy postroeniya matematicheskikh modeley funktsionirovaniya ustroystv pnevmoavtomatiki [Basics of creating a mathematical model for functioning of pneumatic automation devices]. Moscow, Spektr Publ., 2015. 130 p. (In Russ.).