Optimization of the axial pump flow section using the direct methods
Authors: Svoboda D.G., Ivanov E.A., Zharkovskii A.A., Shutsky S.Y. | Published: 08.12.2022 |
Published in issue: #12(753)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Hydraulic Machines and Hydropneumatic Units | |
Keywords: axial flow pump, flow section, optimization criteria, direct optimization methods, optimization efficiency, design parameters |
The direct methods were developed for optimizing the OP-5 axial pump flow section based on the DesignXplorer tool algorithms of the ANSYS Workbench software package. At the first stage, the MOGA genetic algorithm and the ASO gradient method were used. To increase the optimization efficiency, the input parameters were correlated. Accuracy of the relationship between the input and output parameters was evaluated by the determination coefficients values and the scatter diagram. Such studies made it possible to reduce the number of input parameters from nineteen to seven. It is shown that the best approach for numerical optimization of the axial pump flow section is the consistent use of stochastic and local methods.
References
[1] Valyukhov S.G., Galdin D.N., Korotkov V.V. et al. Using approximation models to optimize the impeller profile of a centrifugal pump. Nasosy. Turbiny. Sistemy, 2020, no. 2, pp. 58–65. (In Russ.).
[2] Chuban’ M.A. The approximation of the response surface for using in the process of the parametric synthesis of the engineering structures. Vestnik Nats. tekhn. un-ta KhPI, 2015, no. 43, pp. 161–164. (In Russ.).
[3] Galdin D.N., Kretinin A.V., Pechkurov S.V. [Optimization of a spatial working wheel profile for a centrifugal pump using parametrized model of a flow part and artificial neutral network]. Trudy MNTK SINT21 [Proc. Int. Sci.-Tech. Conf. SINT21]. Voronezh, 2021, pp. 31–42. (In Russ.).
[4] Chernyy S.G., Chirkov D.V., Lapin V.N. et al. Chislennoe modelirovanie techeniy v turbomashinakh [Numerical modeling of flows in turbomachines]. Novosibirsk, Nauka Publ., 2006. 202 p. (In Russ.).
[5] Pilev I.M., Sotnikov A.A., Rigin V.E. et al. Multiobjective optimal design of runner blade using efficiency and draft tube pulsation criteria. IOP Conf. Ser.: Earth Environ. Sci., 2012, vol. 15, art. 032003, doi: https://doi.org/10.1088/1755-1315/15/3/032003
[6] Chirkov D.V., Skorospelov V.A., Turuk P.A., Semenova A.V., Ustimenko A.S., Rigin V.E. Multi-objective shape optimization of draft tube of hydraulic turnine. Gidravlicheskie mashiny, gidroprivody i gidropnevmoavtomatika. Sovremennoe sostoyanie i perspektivy razvitiya. Tr. mezhd. nauch.-tekh. konf. [Hydraulic machines, Hydraulic Drives and Hydraulic and Pneumatic Control Systems. Current State and Prospects of Development. Proc. All-Russian. Sci.-Tech. Conf.]. Sankt-Petersburg, POLYTECH-PRESS, 2022, pp. 10–28, doi: 10.18720/SPBPU/2/id22-159.
[7] Azarkh D.N., Popova N.V. Osevye nasosy [Axial pumps]. Moscow, VIGM, 1961. 36 p. (In Russ.).
[8] Astrakova A.S., Bannikov D.V., Lavrent’yev M.M. et al. Application of the genetic algorithm to solution of the optimal sensors location problem. Vychislitel’nye tekhnologii [Computational Technologies], 2009, vol. 14, no. 5, pp. 3–17. (In Russ.).
[9] Semenova A.V., Chirkov D.V., Lyutov A.E. Objective functionals for optimization of Kaplan runner blade shape. Nauchno-tekhnicheskie vedomosti SPbGPU, 2014, no. 3, pp. 97–106. (In Russ.).
[10] Sokolova M.A., Rigin V.E., Semenova A.V. [Optimization modeling of impeller blade shape “using efficiency dependence on discharge” criteria]. Gidravlicheskie mashiny, gidropnevmoprivody i gidropnevmoavtomatika. Sb. nauch. tr. Mezhd. nauch.-tekh. konf. [Hydraulic Machines, Hydraulic Pneumatic Actuators and Hydraulic Pneumatic Control Systems. Proc. Sci. Int. Sci.-Tech. Conf.]. Sankt-Petersburg, Izd-vo SPbPU Publ., 2016, pp. 114–123. (In Russ.).
[11] Semenova A.V., Chirkov D.V., Skorospelov V.A Application the multi-purpose optimization method for design the form of the driving wheel blade at rotary-blade hydroturbine. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk [Izvestia RAS SamSC], 2013, vol. 15, no. 4–2, pp. 588–593. (In Russ.).
[12] Bunday B. Basic optimisation methods. Edward Arnold, 1984. 136 p. (Russ. ed.: Metody optimizatsii. Moscow, Radio i svyaz’ Publ., 1988. 127 p.)
[13] Ansys user’s guide. Release 18.2. ANSYS, 2017. 3028 p.
[14] Bannikov D.V., Chernyy S.G., Chirkov D.V. et al. Optimization of multiregime design for the runner of a hydro turbine. Vychislitel’nye tekhnologii [Computational Technologies], 2009, vol. 14, no. 2, pp. 32–50. (In Russ.).
[15] Bannikov D.V., Chernyy S.G., Chirkov D.V. et al. Economic full-implicit numerical method for parabolic equations with mixed derivatives. Vychislitel’nye tekhnologii [Computational Technologies], 2010, vol. 15, no. 5, pp. 72–89. (In Russ.).